Jump to content

Unsupervised Learning: Difference between revisions

Line 174: Line 174:


==Generative Models==
==Generative Models==
Goal: Generate realistic but fake samples.
Applications: Denoising, impainting
===VAEs===
===VAEs===
Variational Auto-Encoders<br>
Variational Auto-Encoders<br>
[https://arxiv.org/abs/1606.05908 Tutorial]<br>
[https://arxiv.org/abs/1606.05908 Tutorial]<br>
====KL Divergence====
====KL Divergence====
[[Wikipedia:Kullback–Leibler divergence]]<br>
* [[Wikipedia:Kullback–Leibler divergence]]<br>
Kullback–Leibler divergence<br>
* Kullback–Leibler divergence<br>
<math>KL(P \Vert Q) =E_{P}\left[ \log(\frac{P(X)}{Q(X)} \right]</math>
* <math>KL(P \Vert Q) =E_{P}\left[ \log(\frac{P(X)}{Q(X)}) \right]</math>
; Notes
* KL is always >= 0
* KL is not symmetric
 
====Model====
Our model for how the data is generated is as follows:
* Generate latent variables <math>z^{(1)},...,z^{(m)} \in \mathbb{R}^r<math> iid where dimension r is less than n.
** We assume <math>Z^{(i)} \sim N(\mathbf{0},\mathbf{I})</math>
* Generate <math>x^{(i)}</math> where <math>X^{(i)} \vert Z^{(i)} \sin N(g_{\theta}(z), \sigma^2 \mathbf{I})</math>
** For some function <math>g_{\theta_1}}</math> parameterized by <math>\theta_1</math>
 
====Variational Bound====
The variational bound is:
* <math>\log P(x^{(i)}) \geq E_{Z}[\log P(X^{(i) \vert Z)] - KL(Q_i(z) \Vert P(z))</math>
{{hidden | Derivation |
We know from Baye's rule
}}