Jump to content

Machine Learning: Difference between revisions

Line 38: Line 38:
====Mercer's Theorem====
====Mercer's Theorem====
Let our kernel function be <math>K(z,x)</math>.
Let our kernel function be <math>K(z,x)</math>.
Then for any sample S, the corresponding matrix <math>\mathbf{K}</math> where <math>K_{ij} = K(x^{(i)},x^{(j)}</math> is symmetric positive definite.
Then for any sample S, the corresponding matrix <math>\mathbf{K}</math> where <math>K_{ij} = K(x^{(i)},x^{(j)})</math> is symmetric positive definite.
{{hidden | Proof |
{{hidden | Proof |
Symmetry: <math>K_{ij} = K(\mathbf{x}^{(i)},\mathbf{x}^{(j)} = \phi(\mathbf{x}^{(i)})^T\phi(\mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(j)})^T\phi(\mathbf{x}^{(i)}) = K_{ji}</math><br>
Symmetry: <math>K_{ij} = K(\mathbf{x}^{(i)},\mathbf{x}^{(j)} = \phi(\mathbf{x}^{(i)})^T\phi(\mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(j)})^T\phi(\mathbf{x}^{(i)}) = K_{ji}</math><br>