Jump to content

Probability: Difference between revisions

Line 5: Line 5:
This is important for tests.<br>
This is important for tests.<br>
See [https://en.wikipedia.org/wiki/Relationships_among_probability_distributions Relationships among probability distributions].
See [https://en.wikipedia.org/wiki/Relationships_among_probability_distributions Relationships among probability distributions].
===Poisson Distributions===
Sum of poission is poisson sum of lambda.
===Normal Distributions===
===Normal Distributions===
If <math>X_1 \sim N(\mu_1, \sigma_1^2)</math> and <math>X_2 \sim N(\mu_2, \sigma_2^2)</math> then <math>\lambda_1 X_1 + \lambda_2 X_2 \sim N(\lambda_1 \mu_1 + \lambda_2 X_2, \lambda_1^2 \sigma_1^2 + \lambda_2^2 + \sigma_2^2)</math> for any <math>\lambda_1, \lambda_2 \in \mathbb{R}</math>
If <math>X_1 \sim N(\mu_1, \sigma_1^2)</math> and <math>X_2 \sim N(\mu_2, \sigma_2^2)</math> then <math>\lambda_1 X_1 + \lambda_2 X_2 \sim N(\lambda_1 \mu_1 + \lambda_2 X_2, \lambda_1^2 \sigma_1^2 + \lambda_2^2 + \sigma_2^2)</math> for any <math>\lambda_1, \lambda_2 \in \mathbb{R}</math>
Line 12: Line 16:
If <math>X \sim \Gamma(k, \theta)</math> then <math>\lambda X \sim \Gamma(k, c\theta)</math>.<br>
If <math>X \sim \Gamma(k, \theta)</math> then <math>\lambda X \sim \Gamma(k, c\theta)</math>.<br>
If <math>X_1 \sim \Gamma(k_1, \theta)</math> and <math>X_2 \sim \Gamma(k_2, \theta)</math> then <math>X_2 + X_2 \sim \Gamma(k_1 + k_2, \theta)</math>.
If <math>X_1 \sim \Gamma(k_1, \theta)</math> and <math>X_2 \sim \Gamma(k_2, \theta)</math> then <math>X_2 + X_2 \sim \Gamma(k_1 + k_2, \theta)</math>.
If <math>X_1 \sim \Gamma(\alpha, \theta)</math> and <math>X_2 \sim \Gamma(\beta, \theta)</math>, then <math>\frac{X_1}{X_1 + X_2} \sim B(\alpha, \beta)</math>
===T-distribution===
Ratio of normal and squared-root of Chi-sq distribution yields T-distribution.


===Gamma and Beta===
===Chi-Sq Distribution===
If <math>X_1 \sim \Gamma(\alpha, \theta)</math> and <math>X_2 \sim \Gamma(\beta, \theta)</math>, then <math>\frac{X_1}{X_1 + X_2} \sim B(\alpha, \beta)</math>
The ratio of two normalized Chi-sq is an F-distributions
 
===F Distribution===
Too many. See [https://en.wikipedia.org/wiki/F-distribution the Wikipedia Page].
Most important are Chi-sq and T distribution