Computer Graphics: Difference between revisions

Line 108: Line 108:
[https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix]
[https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix]


The projection matrix applies a perspective projection based on the field of view of the camera. This is done dividing the x,y view coordinates by the z-coordinate so that further object appear closer to the center. Note that the output is typically in normalized device coordinates <math>[-1, 1]\times[-1, 1]</math> rather than image coordinates <math>[0, W] \times [0, H]</math>.
https://www.songho.ca/opengl/gl_projectionmatrix.html
 
The projection matrix applies a perspective projection based on the field of view of the camera. This is done dividing the x,y view coordinates by the z-coordinate so that further object appear closer to the center. Note that the output is typically in normalized device coordinates (NDC) <math>[-1, 1]\times[-1, 1]</math> rather than image coordinates <math>{0, ..., W-1} \times {0, ..., H-1}</math>. Additionally, in NDC, the y-coordinate typically points upwards unlike image coordinates.
 
The Z-coordinate in the projection matrix represents a remapped version of the z-depth, i.e. depth along the camera forward axis. In OpenGL, this maps z=-f to 1 and z=-n to -1 where -z is forward.


Notes: In computer vision, this is analogous to the calibration matrix <math>K</math>.  
Notes: In computer vision, this is analogous to the calibration matrix <math>K</math>.