Geometric Computer Vision: Difference between revisions
Line 214: | Line 214: | ||
===Moving plane=== | ===Moving plane=== | ||
For a point on a plane p and a normal vector n, the set of all points on the plane is <math>{x | (x \cdot n) = d\}</math> where <math>d=(p \cdot n)</math> is the distance to the plane from the origin along the normal vector | For a point on a plane p and a normal vector n, the set of all points on the plane is <math>\{x | (x \cdot n) = d\}</math> where <math>d=(p \cdot n)</math> is the distance to the plane from the origin along the normal vector. | ||
==Projects== | ==Projects== |
Revision as of 17:05, 9 March 2021
Notes for CMSC733 Classical and Deep Learning Approaches for Geometric Computer Vision taught by Prof. Yiannis Aloimonos.
Convolution and Correlation
See Convolutional neural network.
Traditionally, fixed filters are used instead of learned filters.
Edge Detection
Two ways to detect edges:
- Difference operators
- Models
Image Gradients
- Angle is given by \(\displaystyle \theta = \arctan(\frac{\partial f}{\partial y}, \frac{\partial f}{\partial x})\)
- Edge strength is given by \(\displaystyle \left\Vert (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) \right\Vert\)
Sobel operator is another way to approximate derivatives:
\(\displaystyle
s_x =
\frac{1}{8}
\begin{bmatrix}
-1 & 0 & 1\\
-2 & 0 & 2\\
-1 & 0 & 1
\end{bmatrix}
\) and
\(\displaystyle
s_y =
\frac{1}{8}
\begin{bmatrix}
1 & 2 & 1\\
0 & 0 & 0\\
-1 & -2 & -1
\end{bmatrix}
\)
You can smooth a function by convolving with a Gaussian kernel.
- Laplacian of Gaussian
- Edges are zero crossings of the Laplacian of Gaussian convolved with the signal.
Effect of \(\displaystyle \sigma\) Gaussian kernel size:
- Large sigma detects large scale edges.
- Small sigma detects fine features.
- Scale Space
- With larger sigma, the first derivative peaks (i.e. zero crossings) can move.
- Close-by peaks can also merge as the scale increases.
- An edge will never split.
Subtraction
- Create a smoothed image by convolving with a Gaussian
- Subtract the smoothed image from the original image.
Finding lines in an image
Option 1: Search for line everywhere.
Option 2: Use Hough transform voting.
Hough Transform
Duality between lines in image space and points in Hough space.
Equation for a line in \(\displaystyle d = x \cos \theta + y \sin \theta\).
for all pixels (x,y) on an edge: for all (d, theta): if d = x*cos(theta) + y*sin(theta): H(d, theta) += 1 d, theta = argmax(H)
- Hough transform handles noise better than least squares.
- Each pixel votes for a line in the Hough space. The line in the image space is the intersection of lines in the Hough space.
- Extensions
- Use image gradient.
- Give more votes for stronger edges
- Change sampling to give more/less resolution
- Same procedure with circles, squares, or other shapes.
- Hough transform for curves
Works with any curve that can be written in a parametric form.
Finding corners
\(\displaystyle C = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y\\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} \)
Consider \(\displaystyle C = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \)
Theoretical model of an eye
- Pick a point in space and the light rays passing through it.
- Pinhole cameras
- Abstractly, a box with a small hole in it.
Homography
Cross-ratio
Solving for homographies
Given 4 correspondences, you can solve for a homography.
Point and line duality
Points on the image correspond to lines/rays in 3D space.
The cross product of these correspond to a plane.
Calibration
Central Projection
\(\displaystyle \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0\\ 0 & f & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_s \\ y _s \\ z_s \\ 1 \end{bmatrix} \)
Properties of matrix P
\(\displaystyle P = K R [I_3 | -C]\)
- \(\displaystyle K\) is the upper-triangular calibration matrix which has 5 degrees of freedom.
- \(\displaystyle R\) is the rotation matrix with 3 degrees of freedom.
- \(\displaystyle C\) is the camera center with 3 degrees of freedom.
Calibration
- Estimate matrix P using scene points and images.
- Estimate interior parameters and exterior parameters.
Zhang's Approach
Stereo
Parallel Cameras
Consider two cameras, where the right camera is shifted by baseline \(\displaystyle d\) along the x-axis compared to the left camera.
Then for a point \(\displaystyle (x,y,z)\),
\(\displaystyle x_l = \frac{x}{z}\)
\(\displaystyle y_l = \frac{y}{z}\)
\(\displaystyle x_r = \frac{x-d}{z}\)
\(\displaystyle y_r = \frac{y}{z}\).
Thus, the stereo disparity is the ratio of baseline over depth: \(\displaystyle x_l - x_r = \frac{d}{z}\).
With known baseline and correspondence, you can solve for depth \(\displaystyle z\).
Epipolar Geometry
- Warp the two images such that the epipolar lines become horizontal.
- This is called rectification.
The epipoles are where one camera sees the other.
Rectification
- Consider the left camera to be the center of a coordinate system.
- Let \(\displaystyle e_1\) be the axis to the right camera, \(\displaystyle e_2\) to be the up axis, and take \(\displaystyle e_3 = e_1 \times e_2\).
Random dot stereograms
Shows that recognition is not needed for stereo.
Similarity Construct
- Do matching by computing the sum of square differences (SSD) of a patch along the epipolar lines.
- The ordering of pixels along an epipolar line may not be the same between left and right images.
Correspondence + Segmentation
- Assumption: Similar pixels in a segmentation map will probably have the same disparity.
- For each shift, find the connected components.
- For each point p, pick the largest connected component.
Essential Matrix
The essential matrix satisfies \(\displaystyle \hat{p}' E \hat{p} = 0\) where \(\displaystyle \hat{p} = M^{-1}p\) and \(\displaystyle \hat{p}'=M'^{-1}p'\). The fundamental matrix is \(\displaystyle F=M'^{-T} E M^{-1}\).
- Properties
- The matrix is 3x3.
- If \(\displaystyle F\) is the essential matrix of (P, P') then \(\displaystyle F^T\) is the essential matrix of (P', P).
- The essential matrix can give you the equation of the epipolar line in the second image.
- \(\displaystyle l'=Fp\) and \(\displaystyle l=F^T p'\)
- For any p, the epipolar line \(\displaystyle l'=Fp\) contains the epipole \(\displaystyle e'\). This is since they come from the camera in the image.
- \(\displaystyle e'^T F = 0\) and \(\displaystyle Fe=0\)
Optical Flow
Only Translation
\(\displaystyle u = \frac{-V + xW}{Z} = \frac{W}{Z}(-\frac{U}{W} + x) = \frac{W}{Z}(x - x_0)\)
\(\displaystyle v = \frac{-V + \gamma W}{Z} = \frac{W}{Z}(-\frac{V}{W} + \gamma) = \frac{W}{Z}(y - y_0)\)
The direction of the translation is:
\(\displaystyle \frac{v}{u} = \frac{y-y_0}{x-x_0}\)
The all eminate from the focus of expansion.
If you walk towards a point in the image, then all pixels will flow away from that point.
Only Rotation
Rotation around x axis: \(\displaystyle x = \alpha x y - \beta (1 + x^2) - \gamma y\)
Rotation around y or z axis leads to hyperbolas. The rotation is independent of depth.
Both translation and rotation
The flow field will not resemble any of the above patterns.
The velocity of p
Moving plane
For a point on a plane p and a normal vector n, the set of all points on the plane is \(\displaystyle \{x | (x \cdot n) = d\}\) where \(\displaystyle d=(p \cdot n)\) is the distance to the plane from the origin along the normal vector.