Camera Parameters: Difference between revisions
| Line 17: | Line 17: | ||
-f/s_x & s & o_x\\  | -f/s_x & s & o_x\\  | ||
0 & -f/s_y & o_y\\  | 0 & -f/s_y & o_y\\  | ||
0 & 0 & 1   | |||
\end{bmatrix}  | |||
\end{equation}  | |||
\]  | |||
E.g. if your camera has a 90 deg FOV on each side and outputs a resolution of <math>256 \times 256</math>, then the intrinsic matrix should project <math>(1,0,1)</math> to <math>(256, 0)</math>:  | |||
\[  | |||
\begin{equation}  | |||
M_{int} =   | |||
\begin{bmatrix}  | |||
-128/256 & 0 & 128/256\\  | |||
0 & -128/256 & 128/256\\  | |||
0 & 0 & 1    | 0 & 0 & 1    | ||
\end{bmatrix}  | \end{bmatrix}  | ||
Revision as of 13:10, 23 September 2020
Camera Parameters
Intrinsics
The is the projection matrix which turns camera coordinates to image coordinates.
It consists of the following:
- Focal Length \(f\)
 - Image Center \(\mathbf{o} = (o_x, o_y)\)
 - Size of pixels \(\mathbf{s} = (s_x, s_y)\)
 - Axis skew \(s\) typically 0
 
The formula for this matrix is: \[ \begin{equation} M_{int} = \begin{bmatrix} -f/s_x & s & o_x\\ 0 & -f/s_y & o_y\\ 0 & 0 & 1 \end{bmatrix} \end{equation} \]
E.g. if your camera has a 90 deg FOV on each side and outputs a resolution of \(\displaystyle 256 \times 256\), then the intrinsic matrix should project \(\displaystyle (1,0,1)\) to \(\displaystyle (256, 0)\): \[ \begin{equation} M_{int} = \begin{bmatrix} -128/256 & 0 & 128/256\\ 0 & -128/256 & 128/256\\ 0 & 0 & 1 \end{bmatrix} \end{equation} \]
Extrinsics
This is the view matrix which encodes the camera's position and rotation.
Suppose the camera position is \(\mathbf{C}\) and rotation \(\mathbf{R}_c\).
\[ \begin{equation} M_{ext}= [\mathbf{R} | \mathbf{t}] = [\mathbf{R}_c^T | -\mathbf{R}_c^T \mathbf{C}] \end{equation} \]