Camera Parameters

From David's Wiki
\( \newcommand{\P}[]{\unicode{xB6}} \newcommand{\AA}[]{\unicode{x212B}} \newcommand{\empty}[]{\emptyset} \newcommand{\O}[]{\emptyset} \newcommand{\Alpha}[]{Α} \newcommand{\Beta}[]{Β} \newcommand{\Epsilon}[]{Ε} \newcommand{\Iota}[]{Ι} \newcommand{\Kappa}[]{Κ} \newcommand{\Rho}[]{Ρ} \newcommand{\Tau}[]{Τ} \newcommand{\Zeta}[]{Ζ} \newcommand{\Mu}[]{\unicode{x039C}} \newcommand{\Chi}[]{Χ} \newcommand{\Eta}[]{\unicode{x0397}} \newcommand{\Nu}[]{\unicode{x039D}} \newcommand{\Omicron}[]{\unicode{x039F}} \DeclareMathOperator{\sgn}{sgn} \def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits} \def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits} \)

Camera Parameters

Intrinsics

The is the projection matrix which turns camera coordinates to image coordinates.

It consists of the following:

  • Focal Length \(f\) - this determines the field of view.
  • Image Center \(\mathbf{o} = (o_x, o_y)\) (also known as principal point)
  • Size of pixels \(\mathbf{s} = (s_x, s_y)\) (based on the resolution)
  • Axis skew \(s\) typically 0

The formula for this matrix is: \[ \begin{equation} M_{int} = \begin{bmatrix} f/s_x & s & o_x\\ 0 & f/s_x & o_y\\ 0 & 0 & 1 \end{bmatrix} \end{equation} \]

E.g. if your camera has a 90 deg FOV on each side and outputs a resolution of \(\displaystyle 256 \times 256\), then the intrinsic matrix should project \(\displaystyle (1,0,1)\) to \(\displaystyle (256, 0)\): \[ \begin{equation} M_{int} = \begin{bmatrix} 128/256 & 0 & 128/256\\ 0 & 128/256 & 128/256\\ 0 & 0 & 1 \end{bmatrix} \end{equation} \]

Note you can also write \(\displaystyle f/s_x\) as \(\displaystyle f_x\), and similar for \(\displaystyle f_y\).

Extrinsics

This is the view matrix which encodes the camera's position and rotation.

Suppose the camera position is \(\mathbf{C}\) and rotation \(\mathbf{R}_c\).

\[ \begin{equation} M_{ext}= [\mathbf{R} | \mathbf{t}] = [\mathbf{R}_c^T | -\mathbf{R}_c^T \mathbf{C}] \end{equation} \]

Resources