Camera Parameters: Difference between revisions

 
(8 intermediate revisions by the same user not shown)
Line 5: Line 5:


It consists of the following:
It consists of the following:
* Focal Length \(f\)
* Focal Length \(f\) - this determines the field of view.
* Image Center  \(\mathbf{o} = (o_x, o_y)\)
* Image Center  \(\mathbf{o} = (o_x, o_y)\) (also known as principal point)
* Size of pixels \(\mathbf{s} = (s_x, s_y)\)
* Size of pixels \(\mathbf{s} = (s_x, s_y)\) (based on the resolution)
* Axis skew \(s\) typically 0
* Axis skew \(s\) typically 0


Line 15: Line 15:
M_{int} =  
M_{int} =  
\begin{bmatrix}
\begin{bmatrix}
-f/s_x & s & o_x\\
f/s_x & s & o_x\\
0 & -f/s_y & o_y\\
0 & f/s_x & o_y\\
0 & 0 & 1  
0 & 0 & 1  
\end{bmatrix}
\end{bmatrix}
\end{equation}
\end{equation}
\]
\]
E.g. if your camera has a 90 deg FOV on each side and outputs a resolution of <math>256 \times 256</math>, then the intrinsic matrix should project <math>(1,0,1)</math> to <math>(256, 0)</math>:
\[
\begin{equation}
M_{int} =
\begin{bmatrix}
128/256 & 0 & 128/256\\
0 & 128/256 & 128/256\\
0 & 0 & 1
\end{bmatrix}
\end{equation}
\]
;Note you can also write <math>f/s_x</math> as <math>f_x</math>, and similar for <math>f_y</math>.


==Extrinsics==
==Extrinsics==
This is the view matrix which encodes the camera's position and rotation. 
Suppose the camera position is \(\mathbf{C}\) and rotation \(\mathbf{R}_c\). 
\[
\begin{equation}
M_{ext}= [\mathbf{R} | \mathbf{t}] = [\mathbf{R}_c^T | -\mathbf{R}_c^T \mathbf{C}]
\end{equation}
\]


==Resources==
==Resources==