Probability: Difference between revisions

Line 90: Line 90:
Suppose <math>\sqrt{n}(X_n - \theta) \xrightarrow{D} N(0, \sigma^2)</math>.<br>
Suppose <math>\sqrt{n}(X_n - \theta) \xrightarrow{D} N(0, \sigma^2)</math>.<br>
Let <math>g</math> be a function such that <math>g'</math> exists and <math>g'(\theta) \neq 0</math><br>
Let <math>g</math> be a function such that <math>g'</math> exists and <math>g'(\theta) \neq 0</math><br>
Then <math>\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{D} N(0, \sigma^2 g'(\theta)^2)</math><br>
Then <math>\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{D} N(0, \sigma^2 g'(\theta)^2)</math>
 
Multivariate:<br>
Multivariate:<br>
<math>\sqrt{n}(B - \beta) \xrightarrow{D} N(0, \Sigma) \implies \sqrt{n}(h(B)-h(\beta)) \xrightarrow{D} N(0, h'(\theta)^T \Sigma h'(\theta))</math><br>
<math>\sqrt{n}(B - \beta) \xrightarrow{D} N(0, \Sigma) \implies \sqrt{n}(h(B)-h(\beta)) \xrightarrow{D} N(0, h'(\theta)^T \Sigma h'(\theta))</math>
 
;Notes
;Notes
* You can think of this like the Mean Value theorem for random variables.
* You can think of this like the Mean Value theorem for random variables.