Spherical Harmonics: Difference between revisions

No edit summary
Line 4: Line 4:
==Background==
==Background==
===Harmonic Function===
===Harmonic Function===
[https://en.wikipedia.org/wiki/Harmonic_function Wikipedia Reference]<br>
{{main | Wikipedia: Harmonic_function}}
A function <math>f: \mathbb{R}^n \rightarrow \mathbb{R}</math> is a harmonic function if it satisfies Laplace's equation:
A function <math>f: \mathbb{R}^n \rightarrow \mathbb{R}</math> is a harmonic function if it satisfies Laplace's equation:
* The Laplacian (or trace of the hessian) is zero.
* The Laplacian (or trace of the hessian) is zero.
* <math>\Delta f = \frac{\partial^2f}{\partial x_1^2} + \frac{\partial^2f}{\partial x_2^2} + \cdots + \frac{\partial^2f}{\partial x_n^2} = 0</math>
* <math>\Delta f = \frac{\partial^2f}{\partial x_1^2} + \frac{\partial^2f}{\partial x_2^2} + \cdots + \frac{\partial^2f}{\partial x_n^2} = 0</math>
===Associated Legendre Polynomials===
{{main | Wikipedia:Associated Legendre polynomials}}
Associated Legendre Polynomials are a set of orthogonal polynomials defined over \([-1, 1]\).
The following 3 recurrance relations define the associated legendre polynomials:
# <math>(l-m)P_l^m = x(2l-1)P_{l-1}^m - (l+1-1) P_{l-2}^m</math>
# <math>P_m^m = (-1)^m(2m-1)!! (1-x^2)^{m/2}</math>
# <math>P^m_{m+1} = x(2m+1)P^m_m</math>
Notes:
* Here <math>
(x)!! =
\begin{cases}
(x)*(x-2)*...*(1) & x\text{ odd}\\
(x)*(x-2)*...*(2) & x\text{ even}
\end{cases}
</math>


==Definition==
==Definition==