Image Registration: Difference between revisions

Line 110: Line 110:
   for j=1 to n_{theta_i}
   for j=1 to n_{theta_i}
     IP(i,j)=I(R_max + R_i*cos(2*pi*j/n_theta_i),
     IP(i,j)=I(R_max + R_i*cos(2*pi*j/n_theta_i),
               R_max + R_i*sin(2*pi*j/n_theta_i)
               R_max + R_i*sin(2*pi*j/n_theta_i))
</pre>
</pre>
The paper continues to define a projection \(\mathfrak{R}, \Theta\) to a 1-d image:
\[
\Theta(j) = \sum_{i=1}^{n_4}\left[ \eta_{ij}^1 IP\left(i, \left\lceil\frac{j-1}{\Omega_i}\right\rceil\right) + \eta^2_{ij}IP\left(i, \left\lceil\frac{j}{\Omega_i}\right\rceil\right) \right]
\]
where:
* \(i \in [1,...,n_r]\)
* \(j \in [1,...,\hat{n}_\theta\)
* \(\Omega_i = \frac{\hat{n}_0}{n_{\theta_i}}\)
* \(\eta_{ij}^1=\Omega_i(j-1) - \lfloor \Omega_i(j-1)\rfloor\)
* \(\eta_{ij}^2=1-\eta_{ij}^1\)
* \(IP(i, 0) = 0 \quad \forall i\)
Then:
* A scale change appears as ''variable-scale'' i.e. \(\mathbfrak{R_1(\lambda r)\) while \(\Theta\) is slightly altered.
* A rotation in the cartesian image appears as a phase-shift in \(\Theta\).<br>


==References==
==References==