Probability: Difference between revisions

Line 129: Line 129:
* The sample mean converges to the population mean almost surely.
* The sample mean converges to the population mean almost surely.


==Relationships between distributions==
==Properties and Relationships between distributions==
This is important for exams.<br>
This is important for exams.<br>
See [https://en.wikipedia.org/wiki/Relationships_among_probability_distributions Relationships among probability distributions].
See [https://en.wikipedia.org/wiki/Relationships_among_probability_distributions Relationships among probability distributions].


===Poisson Distributions===
===Poisson Distribution===
* If <math>X_i \sim Poisson(\lambda_i)</math> then <math>\sum X_i \sim Poisson(\sum \lambda_i)</math>
* If <math>X_i \sim Poisson(\lambda_i)</math> then <math>\sum X_i \sim Poisson(\sum \lambda_i)</math>


===Normal Distributions===
===Normal Distribution===
* If <math>X_1 \sim N(\mu_1, \sigma_1^2)</math> and <math>X_2 \sim N(\mu_2, \sigma_2^2)</math> then <math>\lambda_1 X_1 + \lambda_2 X_2 \sim N(\lambda_1 \mu_1 + \lambda_2 X_2, \lambda_1^2 \sigma_1^2 + \lambda_2^2 + \sigma_2^2)</math> for any <math>\lambda_1, \lambda_2 \in \mathbb{R}</math>
* If <math>X_1 \sim N(\mu_1, \sigma_1^2)</math> and <math>X_2 \sim N(\mu_2, \sigma_2^2)</math> then <math>\lambda_1 X_1 + \lambda_2 X_2 \sim N(\lambda_1 \mu_1 + \lambda_2 X_2, \lambda_1^2 \sigma_1^2 + \lambda_2^2 + \sigma_2^2)</math> for any <math>\lambda_1, \lambda_2 \in \mathbb{R}</math>


===Exponential Distributions===
===Exponential Distribution===
* If <math>\epsilon_1, ..., \epsilon_n</math> are exponential distributions then <math>\min\{\epsilon_i\} \sim \exp(\sum \lambda_i)</math>
* If <math>\epsilon_1, ..., \epsilon_n</math> are exponential distributions then <math>\min\{\epsilon_i\} \sim \exp(\sum \lambda_i)</math>
* Note that the maximum is not exponentially distributed
* Note that the maximum is not exponentially distributed
* However, if <math>X_1, ..., X_n \sim \exp(1)</math> then <math>Z_n=n\exp(\max\{\epsilon_i\}) \rightarrow \exp(1)</math>
* However, if <math>X_1, ..., X_n \sim \exp(1)</math> then <math>Z_n=n\exp(\max\{\epsilon_i\}) \rightarrow \exp(1)</math>


===Gamma Distributions===
===Gamma Distribution===
Note exponential distributions are also Gamma distrubitions
Note exponential distributions are also Gamma distrubitions
* If <math>X \sim \Gamma(k, \theta)</math> then <math>\lambda X \sim \Gamma(k, c\theta)</math>.<br>
* If <math>X \sim \Gamma(k, \theta)</math> then <math>\lambda X \sim \Gamma(k, c\theta)</math>.<br>