Fourier transform

From David's Wiki
\( \newcommand{\P}[]{\unicode{xB6}} \newcommand{\AA}[]{\unicode{x212B}} \newcommand{\empty}[]{\emptyset} \newcommand{\O}[]{\emptyset} \newcommand{\Alpha}[]{Α} \newcommand{\Beta}[]{Β} \newcommand{\Epsilon}[]{Ε} \newcommand{\Iota}[]{Ι} \newcommand{\Kappa}[]{Κ} \newcommand{\Rho}[]{Ρ} \newcommand{\Tau}[]{Τ} \newcommand{\Zeta}[]{Ζ} \newcommand{\Mu}[]{\unicode{x039C}} \newcommand{\Chi}[]{Χ} \newcommand{\Eta}[]{\unicode{x0397}} \newcommand{\Nu}[]{\unicode{x039D}} \newcommand{\Omicron}[]{\unicode{x039F}} \DeclareMathOperator{\sgn}{sgn} \def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits} \def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits} \)

The Fourier transform decomposes a signal (i.e. a time series) into multiple sine and cosine waves.


Background

Suppose we have signal\(\displaystyle f(x)\).
Then the Fourier transform \(\displaystyle \hat{f}(\xi)\)is defined as: \[\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-i2 \pi \xi x} dx\]

Recall that Euler's formula states: \(\displaystyle e^{ix} = cos(x) + i \sin(x)\). Hence, \(\displaystyle e^{-i2 \pi \xi x} = cos(-2 \pi \xi x) + i \sin(-2 \pi \xi x)\) In other words, the Fourier transform is the integral (i.e. alignment) of signal times some sine and cosine waves.

The inverse of the fourier transform is: \[f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{i2 \pi \xi x} d\xi\]

Discrete Fourier Transform

A naive DFT would compute the matrix of \(\displaystyle e^{-i2 \pi \xi x}\) and multiply it with the signal. This would take \(\displaystyle \mathcal{O}(n^2)\) time.
However, most languages have an FFT library which can compute the DFT in \(\displaystyle \mathcal{O}(n \log n)\) time.

In most languages, FFT is defined as: \[A_k = \sum_{m=0}^{n-1} f(x) \exp\ \left\{ -2 \pi i \frac{mk}{n} \right\}\] and IFFT is defined as: \[a_m = \frac{1}{n} \sum_{k=0}^{n-1} \hat{f}(\xi) \exp \left\{ 2 \pi i \frac{mk}{n} \right\}\]

That the main difference between the FFT and IFFT is the negative symbol in the exponent. You can implement IFFT as IFFT(x) = (1/len(x))*conj(FFT(conj(x)))[1].

Properties

Note \(\displaystyle \bar{x}\) refers to the complex conjugate Let \(\displaystyle F(s) = FFT(f(s))\).

Linearity
\(\displaystyle FFT(\lambda f + g) = \lambda FFT(f) + FFT(g)\)

Shift
\(\displaystyle FFT(f(x-a)) = e^{-i \omega_k a} F(\omega_k)\)

  • Note \(\displaystyle \omega_k = 2 \pi k/N \)

Similarity
\(\displaystyle FFT(f(ax)) = |a|^{-1} F(s/a)\)

Convolution Theorem
\(\displaystyle f *g \Leftrightarrow F(s) \times G(s)\)
\(\displaystyle f \times g \Leftrightarrow F(s) * G(s)\)

Parseval's Theorem
\(\displaystyle \int |f(x)|^2 dx = \int |F(s)|^2 ds\)

See Wikipedia: Parseval's theorem

More generally, \(\displaystyle \int f(x) g^*(x) dx = \int F(s) G^*(s) ds\)

Autocorrelation
\(\displaystyle \int f(x') f^*(x' - x) dx' \Leftrightarrow |F(x)|^2\)

This is a case of the convolution theorem.

IFFT
\(\displaystyle IFFT(f) = (1/n) FFT^*(f^*)\)

  • Where \(\displaystyle ^*\) is the conjugate.

2D FFT
\(\displaystyle FFT2(f) = FFT_{x}(FFT_{y}(f)) = FFT_{y}(FFT_{x}(f))\)

Phase correlation

Short-time Fourier transform

The STFT applies FFT using a sliding window over the signal.
This produces a matrix of FFT values over time which allow you to see how the signal is changing.

References

<templatestyles src="Reflist/styles.css" />

  1. Siembida, A. (2010, March 11). How to compute the IFFT using only the forward FFT. Adam Siembida Personal Webpage. Retrieved January 24, 2023, from https://adamsiembida.com/how-to-compute-the-ifft-using-only-the-forward-fft/