Unsupervised Learning: Difference between revisions

Line 196: Line 196:
====Variational Bound====
====Variational Bound====
The variational bound is:
The variational bound is:
* <math>\log P(x^{(i)}) \geq E_{Z}[\log P(X^{(i)} \vert Z)] - KL(Q_i(z) \Vert P(z))</math>
* <math>\log P(x^{(i)}) \geq E_{Z \sim Q_i}[\log P(X^{(i)} \vert Z)] - KL(Q_i(z) \Vert P(z))</math>
{{hidden | Derivation |
{{hidden | Derivation |
We know from Baye's rule
We know from Baye's rule that <math>P(z|X) = \frac{P(X|z)P(z)}{P(X)}</math>.<br>
Plugging this into the equation for <math>KL(Q_i(z) \Vert P(z|X))</math> yields our inequality.<br>
<math>KL(Q_i(z) \Vert P(z|X)) = E_{Q} \left[ \log(\frac{Q_i(z)}{P(z|X)}) \right]</math><br>
<math>=E_Q(\log(\frac{Q_i(z) P(X^{(i)})}{P(X_z)P(z)})</math><br>
<math>=E_Q(\log(\frac{Q_i(z)}{P(z)})) + \log(P(x^{(i)})) - E_Q(\log(P(X|z))</math><br>
<math>=KL(Q_i(z) \Vert P(z)) + \log(P(x^{(i)}) - E_Q(\log(P(X|z))</math><br>
Rearranging terms we get:<br>
<math>\log P(x^{(i)}) - KL(Q_i(z) \Vert P(z|X)) = E_Q(\log(P(X|z)) - KL(Q_i(z) \Vert P(z))</math><br>
Since the KL divergence is greater than or equal to 0, our variational bound follows.
}}
}}