# Statistics

$$\newcommand{\P}[]{\unicode{xB6}} \newcommand{\AA}[]{\unicode{x212B}} \newcommand{\empty}[]{\emptyset} \newcommand{\O}[]{\emptyset} \newcommand{\Alpha}[]{Α} \newcommand{\Beta}[]{Β} \newcommand{\Epsilon}[]{Ε} \newcommand{\Iota}[]{Ι} \newcommand{\Kappa}[]{Κ} \newcommand{\Rho}[]{Ρ} \newcommand{\Tau}[]{Τ} \newcommand{\Zeta}[]{Ζ} \newcommand{\Mu}[]{\unicode{x039C}} \newcommand{\Chi}[]{Χ} \newcommand{\Eta}[]{\unicode{x0397}} \newcommand{\Nu}[]{\unicode{x039D}} \newcommand{\Omicron}[]{\unicode{x039F}} \DeclareMathOperator{\sgn}{sgn} \def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits} \def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits}$$

Statistics

## Estimation

(MLE)

### Uniformly Minimum Variance Unbiased Estimator

UMVUE, sometimes called MVUE or UMVU.

## Tests

### Basic Tests

#### T-test

Used to test the mean.

#### F-test

Use to test the ratio of variances.

UMP Test

## Confidence Sets

Confidence Intervals

## Bootstrapping

Wikipedia
Boostrapping is used to sample from your sample to get a measure of accuracy of your statistics.

### Nonparametric Bootstrapping

In nonparametric bootstrapping, you resample from your sample with replacement.
In this scenario, you don't need to know the family of distributions that your sample comes from.

### Parametric Bootstrapping

In parametric bootstrapping, you learn the distribution parameters of your sample, e.g. with MLE.
Then you can generate samples from that distribution on a computer.