Geometric Computer Vision: Difference between revisions

Line 281: Line 281:


Assume <math>E(x(y), y(t), t) = constant</math>
Assume <math>E(x(y), y(t), t) = constant</math>
==Structure from Motion Pipeline==
===Calibration===
# Step 1: Feature Matching
===Fundamental Matrix and Essential Matrix===
# Step 2: Estimate Fundamental Matrix F
#* <math>x_i'^T F x_i = 0</math>
#* Use SVD to solve for x from <math>Ax=0</math>: <math>A=U \Sigma V^T</math>. The solution is the last singular vector of <math>V</math>.
#* Essential Matrix: <math>E = K^T F K</math>
#* '''Fundamental matrix has 7 degrees of freedom, essential matrix has 5 degrees of freedom'''
===Estimating Camera Pose===
Estimating Camera Pose from E 
Pose P has 6 DoF. Do SVD of the essential matrix to get 4 potential solutions. 
You need to do triangulation to select from the 4 solutions.


==Projects==
==Projects==