\( \newcommand{\P}[]{\unicode{xB6}} \newcommand{\AA}[]{\unicode{x212B}} \newcommand{\empty}[]{\emptyset} \newcommand{\O}[]{\emptyset} \newcommand{\Alpha}[]{Α} \newcommand{\Beta}[]{Β} \newcommand{\Epsilon}[]{Ε} \newcommand{\Iota}[]{Ι} \newcommand{\Kappa}[]{Κ} \newcommand{\Rho}[]{Ρ} \newcommand{\Tau}[]{Τ} \newcommand{\Zeta}[]{Ζ} \newcommand{\Mu}[]{\unicode{x039C}} \newcommand{\Chi}[]{Χ} \newcommand{\Eta}[]{\unicode{x0397}} \newcommand{\Nu}[]{\unicode{x039D}} \newcommand{\Omicron}[]{\unicode{x039F}} \DeclareMathOperator{\sgn}{sgn} \def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits} \def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits} \)

Notes for CMSC 828W: Foundations of Deep Learning (Fall 2020) taught by Soheil Feizi

My notes are intended to be a concise reference for myself, not a comprehensive replacement for lecture.

Basics

A refresher of Machine Learning and Supervised Learning.

Empirical risk minimization (ERM)

Minimize loss function over your data: \(\displaystyle \min_{W} \frac{1}{N} \sum_{i=1}^{N} l(f_{W}(x_i), y_i))\)

Loss functions

For regression, can use quadratic loss: \(\displaystyle l(f_W(x), y) = \frac{1}{2}\Vert f_W(x)-y \Vert^2\)

For 2-way classification, can use hinge-loss: \(\displaystyle l(f_W(x), y) = \max(0, 1-yf_W(x))\)

For multi-way classification, can use cross-entropy loss:
\(\displaystyle g(z)=\frac{1}{1+e^{-z}}\)
\(\displaystyle -\sum_{i=1}^{N}\left[y_i\log(y(f_W(x)) + (1-y_i)\log(1-g(f_W(x))\right]\)

Misc

Visible to::users

Resources