Deep Learning: Difference between revisions

From David's Wiki
Line 21: Line 21:
For multi-way classification, can use cross-entropy loss:   
For multi-way classification, can use cross-entropy loss:   
<math>g(z)=\frac{1}{1+e^{-z}}</math>   
<math>g(z)=\frac{1}{1+e^{-z}}</math>   
<math>\min_{W} -\sum_{i=1}^{N}\left[y_i\log(y(f_W(x)) + (1-y_i)\log(1-g(f_W(x))\right]</math>
<math>\min_{W} -\sum_{i=1}^{N}\left[y_i\log(y(f_W(x_i)) + (1-y_i)\log(1-g(f_W(x_i))\right]</math>


==Misc==
==Misc==

Revision as of 15:46, 1 September 2020

Notes for CMSC 828W: Foundations of Deep Learning (Fall 2020) taught by Soheil Feizi

My notes are intended to be a concise reference for myself, not a comprehensive replacement for lecture.

Basics

A refresher of Machine Learning and Supervised Learning.

Empirical risk minimization (ERM)

Minimize loss function over your data: \(\displaystyle \min_{W} \frac{1}{N} \sum_{i=1}^{N} l(f_{W}(x_i), y_i))\)

Loss functions

For regression, can use quadratic loss: \(\displaystyle l(f_W(x), y) = \frac{1}{2}\Vert f_W(x)-y \Vert^2\)

For 2-way classification, can use hinge-loss: \(\displaystyle l(f_W(x), y) = \max(0, 1-yf_W(x))\)

For multi-way classification, can use cross-entropy loss:
\(\displaystyle g(z)=\frac{1}{1+e^{-z}}\)
\(\displaystyle \min_{W} -\sum_{i=1}^{N}\left[y_i\log(y(f_W(x_i)) + (1-y_i)\log(1-g(f_W(x_i))\right]\)

Misc

Visible to::users

Resources