Eigen (C++ library)
Eigen is a template header-only C++ linear algebra library. You can think of it as as numpy for C++.
Usage
Compilation
Reference
For optimal performance, I recommend using the following flags when compiling.
GCC
-march=native
and-mtune=native
if running only locally or-march=skylake
if distributing to relatively modern (since ~2015) cpus.- Otherwise, at a minimum
-mfma
Enable fused multiply add-mavx2
Enable avx2 vector instructions
-DEIGEN_NO_DEBUG
Set preprocessor define for eigen optimizations-fopenmp
OpenMP parallel execution-O3
to enable optimizations
Data to Eigen
You can use Eigen::Map
to create an eigen view for your existing data.
This works with aligned or unaligned data, row-order or column-order, and different strides.
See Eigen: Interfacing with raw buffers for an example.
Math
SVD
Eigen comes with a few SVD implementations in its SVD Module.
If you only need low-rank approximations then you may be interested in randomized SVD.
This can be 10-20x faster when calculating low-rank approximations on large matrices.
Github Implementation
Finding structure with randomness paper
Facebook Blog post
Unsupported
FFT
https://eigen.tuxfamily.org/dox/unsupported/group__FFT__Module.html
https://gitlab.com/libeigen/eigen/-/blob/master/unsupported/Eigen/FFT?ref_type=heads
https://eigen.tuxfamily.org/index.php?title=EigenFFT
This uses either kissfft (default), fftw, Intel oneMKL, or pocketFFT under the hood.
There is very little documentation on this so it's easier to just read the code:
// Initialize standard FFT.
Eigen::FFT<double> fft;
// Initialize RFFT
Eigen::FFT<double> fft(Eigen::FFT<double>::impl_type(), Eigen::FFT<double>::HalfSpectrum);
// Do the actual FFT or RFFT.
std::vector<double> my_data = {1.0, 2.0, 3.0, 4.0};
std::vector<std::complex<double>> fft_result;
fft.fwd(fft_result, my_data);
// Inverse
fft.inv(my_data, fft_result);
Notes
- Alternative backend implementations can be set with
EIGEN_FFTW_DEFAULT
,EIGEN_MKL_DEFAULT
,EIGEN_POCKETFFT_DEFAULT
fwd2
andinv2
is available on the non-default backends.