\(
\newcommand{\P}[]{\unicode{xB6}}
\newcommand{\AA}[]{\unicode{x212B}}
\newcommand{\empty}[]{\emptyset}
\newcommand{\O}[]{\emptyset}
\newcommand{\Alpha}[]{Α}
\newcommand{\Beta}[]{Β}
\newcommand{\Epsilon}[]{Ε}
\newcommand{\Iota}[]{Ι}
\newcommand{\Kappa}[]{Κ}
\newcommand{\Rho}[]{Ρ}
\newcommand{\Tau}[]{Τ}
\newcommand{\Zeta}[]{Ζ}
\newcommand{\Mu}[]{\unicode{x039C}}
\newcommand{\Chi}[]{Χ}
\newcommand{\Eta}[]{\unicode{x0397}}
\newcommand{\Nu}[]{\unicode{x039D}}
\newcommand{\Omicron}[]{\unicode{x039F}}
\DeclareMathOperator{\sgn}{sgn}
\def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits}
\def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits}
\)
SynSin: End-to-end View Synthesis from a Single Image (CVPR 2020)
Authors: Olivia Wiles, Georgia Gkioxari, Richard Szeliski, Justin Johnson
Affiliations: University of Oxford, Facebook AI Research, Facebook, University of Michigan
Method
Figure 2 from SynSin Paper
First a depth map and a set of features are generated for each pixel using depth network \(d\) and feature network \(f\).
The depths are used to create a 3D point cloud of features \(P\).
Features are repositioned using the transformation matrix T.
Repositioned features are rendered using a neural point cloud renderer.
Rendered features are passed through a refinement network \(g\).
Architecture
Feature Network
Depth Network
Neural Point Cloud Rendering
Refinement Network
Evaluation
References