360SD-Net: 360° Stereo Depth Estimation with Learnable Cost Volume

From David's Wiki
Revision as of 19:24, 15 June 2020 by David (talk | contribs) (Created page with "360SD-Net: 360° Stereo Depth Estimation with Learnable Cost Volume * [https://arxiv.org/abs/1911.04460 Arxiv Mirror] [https://people.cs.nctu.edu.tw/~walon/publications/wang2...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
\( \newcommand{\P}[]{\unicode{xB6}} \newcommand{\AA}[]{\unicode{x212B}} \newcommand{\empty}[]{\emptyset} \newcommand{\O}[]{\emptyset} \newcommand{\Alpha}[]{Α} \newcommand{\Beta}[]{Β} \newcommand{\Epsilon}[]{Ε} \newcommand{\Iota}[]{Ι} \newcommand{\Kappa}[]{Κ} \newcommand{\Rho}[]{Ρ} \newcommand{\Tau}[]{Τ} \newcommand{\Zeta}[]{Ζ} \newcommand{\Mu}[]{\unicode{x039C}} \newcommand{\Chi}[]{Χ} \newcommand{\Eta}[]{\unicode{x0397}} \newcommand{\Nu}[]{\unicode{x039D}} \newcommand{\Omicron}[]{\unicode{x039F}} \DeclareMathOperator{\sgn}{sgn} \def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits} \def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits} \)

360SD-Net: 360° Stereo Depth Estimation with Learnable Cost Volume


Method

Their input is two equirectangular images, one taken above another.
They also input the polar angle:

# Y angle
angle_y = np.array([(i-0.5)/512*180 for i in range(256, -256, -1)])
angle_ys = np.tile(angle_y[:, np.newaxis, np.newaxis], (1,1024, 1))
equi_info = angle_ys

The angles are equivalent to np.linspace(90, -90, height+1)[:-1] - 0.5*(180/height)

Architecture

Feature Extraction

Both top and bottom images are p

ASPP Module

Atrous-Spatial Pyramid Pooling

This idea comes from Chen et al.[1].

The idea here is to perform convolution over multiple scale of the input image or feature tensor.
This is performed using multiple parallel convolutions of the input, each with different dilation sizes.

Learnable Cost Volume

Dataset

They construct a dataset using Matterport3D and Stanford 3D datasets. Their constructed dataset is available upon request.

Evaluation

  1. Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, Alan L. Yuille, Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs https://arxiv.org/abs/1412.7062