Geometric Computer Vision

Revision as of 16:27, 2 February 2021 by David (talk | contribs)
\( \newcommand{\P}[]{\unicode{xB6}} \newcommand{\AA}[]{\unicode{x212B}} \newcommand{\empty}[]{\emptyset} \newcommand{\O}[]{\emptyset} \newcommand{\Alpha}[]{Α} \newcommand{\Beta}[]{Β} \newcommand{\Epsilon}[]{Ε} \newcommand{\Iota}[]{Ι} \newcommand{\Kappa}[]{Κ} \newcommand{\Rho}[]{Ρ} \newcommand{\Tau}[]{Τ} \newcommand{\Zeta}[]{Ζ} \newcommand{\Mu}[]{\unicode{x039C}} \newcommand{\Chi}[]{Χ} \newcommand{\Eta}[]{\unicode{x0397}} \newcommand{\Nu}[]{\unicode{x039D}} \newcommand{\Omicron}[]{\unicode{x039F}} \DeclareMathOperator{\sgn}{sgn} \def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits} \def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits} \)

Notes for CMSC733 Classical and Deep Learning Approaches for Geometric Computer Vision taught by Prof. Yiannis Aloimonos.

Convolution and Correlation

See Convolutional neural network.
Traditionally, fixed filters are used instead of learned filters.

Edge Detection

Two ways to detect edges:

  • Difference operators
  • Models

Image Gradients

  • Angle is given by \(\displaystyle \theta = \arctan(\frac{df}{dy}, \frac{df}{dx})\)
  • Edge strength is given by \(\displaystyle \left\Vert (\frac{df}{dx}, \frac{df}{dy}) \right\Vert\)