Essential Matrix

From David's Wiki
Revision as of 20:53, 29 April 2020 by David (talk | contribs) (Created page with "An essential matrix, denoted <math>\mathbf{E}</math>, is a <math>3 \times 3</math> matrix relating camera parameters.<br> You can compute the essential matrix based on feature...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
\( \newcommand{\P}[]{\unicode{xB6}} \newcommand{\AA}[]{\unicode{x212B}} \newcommand{\empty}[]{\emptyset} \newcommand{\O}[]{\emptyset} \newcommand{\Alpha}[]{Α} \newcommand{\Beta}[]{Β} \newcommand{\Epsilon}[]{Ε} \newcommand{\Iota}[]{Ι} \newcommand{\Kappa}[]{Κ} \newcommand{\Rho}[]{Ρ} \newcommand{\Tau}[]{Τ} \newcommand{\Zeta}[]{Ζ} \newcommand{\Mu}[]{\unicode{x039C}} \newcommand{\Chi}[]{Χ} \newcommand{\Eta}[]{\unicode{x0397}} \newcommand{\Nu}[]{\unicode{x039D}} \newcommand{\Omicron}[]{\unicode{x039F}} \DeclareMathOperator{\sgn}{sgn} \def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits} \def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits} \)

An essential matrix, denoted \(\displaystyle \mathbf{E}\), is a \(\displaystyle 3 \times 3\) matrix relating camera parameters.
You can compute the essential matrix based on features matches between two images.
Using the essential matrix, you can extract the relative rotation and translation between two cameras.

Given feature points \(\displaystyle \mathbf{x}\) and \(\displaystyle \mathbf{x'}\) from two images, the essential matrix satisfies the equation \(\displaystyle \mathbf{x}'^T \mathbf{E} \mathbf{x} = 0\)

Properties

  • A \(\displaystyle 3 \times 3\) matrix is an essential matrix iff two of its singular values are equal and the third value is \(\displaystyle 0\)
Proof

See Bartoli and Olsen[1].

Calculating the Essential Matrix from two images

Determining rotation \(\displaystyle R\) and translation \(\displaystyle t\)

3D points

See Wikipedia: Essential_matrix

Resources

References