Spherical Harmonics
Spherical Harmonics are a set of orthonormal basis functions
Background
Harmonic Function
Wikipedia Reference
A function \(\displaystyle f: \mathbb{R}^n \rightarrow \mathbb{R}\) is a harmonic function if it satisfies Laplace's equation:
- The Laplacian (or trace of the hessian) is zero.
- \(\displaystyle \Delta f = \frac{\partial^2f}{\partial x_1^2} + \frac{\partial^2f}{\partial x_2^2} + \cdots + \frac{\partial^2f}{\partial x_n^2} = 0\)
Definition
Spherical Harmonics are a set of orthonormal basis functions defined on the sphere.
Below are some explicit formulas for Laplace spherical harmonics stolen from [1]
Applications
Saliency
Ruofei did a project on Saliency using Spherical Harmonics as part of his PhD dissertation.
Resources
References
- ↑ Peter-Pike Sloan, Stupid Spherical Harmonics (SH) Tricks