\(
\newcommand{\P}[]{\unicode{xB6}}
\newcommand{\AA}[]{\unicode{x212B}}
\newcommand{\empty}[]{\emptyset}
\newcommand{\O}[]{\emptyset}
\newcommand{\Alpha}[]{Α}
\newcommand{\Beta}[]{Β}
\newcommand{\Epsilon}[]{Ε}
\newcommand{\Iota}[]{Ι}
\newcommand{\Kappa}[]{Κ}
\newcommand{\Rho}[]{Ρ}
\newcommand{\Tau}[]{Τ}
\newcommand{\Zeta}[]{Ζ}
\newcommand{\Mu}[]{\unicode{x039C}}
\newcommand{\Chi}[]{Χ}
\newcommand{\Eta}[]{\unicode{x0397}}
\newcommand{\Nu}[]{\unicode{x039D}}
\newcommand{\Omicron}[]{\unicode{x039F}}
\DeclareMathOperator{\sgn}{sgn}
\def\oiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x222F}\,}{\unicode{x222F}}{\unicode{x222F}}{\unicode{x222F}}}\,}\nolimits}
\def\oiiint{\mathop{\vcenter{\mathchoice{\huge\unicode{x2230}\,}{\unicode{x2230}}{\unicode{x2230}}{\unicode{x2230}}}\,}\nolimits}
\)
Insights from Leetcode problems.
Finding a cycle in a linked-list
Use two runners. \(\displaystyle O(n)\)
Runner 1 goes two steps per iteration.
Runner 2 goes one step per iteration.
If there is a cycle, runner 2 will lap runner 1 within 2 cycles.
Finding duplicates in an array
If you have an array of ints where each number appears $n$ times and one number appears \(\displaystyle m\gt n\) times where \(\displaystyle gcd(n,m)==1\),
then you count the number of times each bit appears and take it mod \(\displaystyle n\).
The remaining bits will remain \(\displaystyle m \mod n\) times.