Gumbel-Softmax: Difference between revisions

No edit summary
Line 1: Line 1:
Gumbel-softmax<ref name="jang2017gumbel"></ref> is a method to differentiably sample from a categorical distribution.
Gumbel-softmax<ref name="jang2017gumbel"></ref><ref name="madison2017concrete"></ref> is a method to differentiably sample from a categorical distribution.


It is available in PyTorch as [https://pytorch.org/docs/stable/generated/torch.nn.functional.gumbel_softmax.html torch.nn.functional.gumbel_softmax].
It is available in PyTorch as [https://pytorch.org/docs/stable/generated/torch.nn.functional.gumbel_softmax.html torch.nn.functional.gumbel_softmax].
Line 26: Line 26:
{{reflist|refs=
{{reflist|refs=
<ref name="jang2017gumbel">Jang, E., Gu, S., & Poole, B. (2017). Categorical Reparameterization with Gumbel-Softmax. International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=rkE3y85ee</ref>
<ref name="jang2017gumbel">Jang, E., Gu, S., & Poole, B. (2017). Categorical Reparameterization with Gumbel-Softmax. International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=rkE3y85ee</ref>
<ref name="madison2017concrete">Maddison, C. J., Mnih, A., & Teh, Y. W. (2017). The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=S1jE5L5gl</ref>
}}
}}