Fourier transform: Difference between revisions

Created page with "The Fourier transform decomposes a signal (i.e. a time series) into multiple sine and cosine waves. ==Background== Suppose we have signal<math>f(x)</math>.<br> Then the Fourier transform <math>\hat{f}(\xi)</math>is defined as: <math display="block">\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-i2 \pi \xi x} dx</math> Recall that Euler's formula states: <math>e^{ix} = cos(x) + i \sin(x)</math>. Hence, <math>e^{-i2 \pi \xi x} = cos(2 \pi \xi x) + i \sin(2 \pi \xi x)<..."
 
Line 22: Line 22:
<math display="block">A_k = \sum_{0}^{n-1} f(x) \exp\ \left\{ -2 \pi i \frac{mk}{n} \right\}</math>
<math display="block">A_k = \sum_{0}^{n-1} f(x) \exp\ \left\{ -2 \pi i \frac{mk}{n} \right\}</math>
and IFFT is defined as:
and IFFT is defined as:
<math display="block">a_m = (1/n) \sum_{0}^{n-1} \hat{f}(\xi) \exp \left\{ 2 \pi i \frac{mk}{n} \right\}</math>
<math display="block">a_m = \frac{1}{n} \sum_{0}^{n-1} \hat{f}(\xi) \exp \left\{ 2 \pi i \frac{mk}{n} \right\}</math>


==Properties==
==Properties==