CUDA: Difference between revisions

From David's Wiki
No edit summary
No edit summary
Line 50: Line 50:


[[Category:Programming languages]]
[[Category:Programming languages]]
[[Category:GPU Programming languages]]

Revision as of 16:47, 31 January 2022

Installation

Ubuntu 20.04

CUDA Toolkit

See CUDA Ubuntu Installation

# Add NVIDIA package repositories
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /"

# Add the ML Repo (Optional)
wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64/nvidia-machine-learning-repo-ubuntu2004_1.0.0-1_amd64.deb
sudo apt install ./nvidia-machine-learning-repo-ubuntu2004_1.0.0-1_amd64.deb
sudo apt update

# Install NVIDIA driver and cuda.
sudo apt install nvidia-driver-510 cuda
# Reboot and check that the drivers are working with nvidia-smi
sudo reboot

# Install cudnn (Optional)
sudo apt install libcudnn8 libcudnn8-dev
Notes
  • For machine learning, use Anaconda or Docker's CUDA since different versions of TensorFlow and PyTorch require different CUDA versions.

You may need to add LD_LIBRARY_PATH=/usr/local/cuda/lib64 to your environment variables.
You can also do this in PyCharm.

GCC Versions

nvcc sometimes only supports older gcc/g++ versions.
To make it use those by default, create the following symlinks:

  • sudo ln -s /usr/bin/gcc-6 /usr/local/cuda/bin/gcc
  • sudo ln -s /usr/bin/g++-6 /usr/local/cuda/bin/g++

Alternatively, you can use -ccbin and point to your gcc:

-ccbin /usr/local/cuda/bin/gcc

References