Image Registration: Difference between revisions

From David's Wiki
Line 33: Line 33:


The log-polar transformation is defined as follows:<br>
The log-polar transformation is defined as follows:<br>
\[
\(
\begin{align}
\begin{align}
r &= \sqrt{(x-x_c)^2 + (y-y_c)^2}\\
r &= \sqrt{(x-x_c)^2 + (y-y_c)^2}\\
a &= \operatorname{arctan2}(y-y_c, x-x_c)
a &= \operatorname{arctan2}(y-y_c, x-x_c)
\end{align}
\end{align}
\]
\)<br>
where <math>(x_c, y_c)</math> is the center of the image.
where <math>(x_c, y_c)</math> is the center of the image.


Here a rotation in Cartesian coordinates <math>(x, y)</math> around the center \((x_c, y_c)\) corresponds to a shift in \(a\) in log-polar coordinates.<br>
Here a rotation in Cartesian coordinates <math>(x, y)</math> around the center \((x_c, y_c)\) corresponds to a shift in \(a\) in log-polar coordinates.<br>
These translations can be found using [[Wikipedia: Cross-correlation]].
These translations can be found using [[Wikipedia: Cross-correlation]].
A scale change (i.e. enlarge or stretch) is a shift in log-space:<br>
\( \lambda x \mapsto \log(\lambda x) = \log(\lambda) + \log(x) \)


==References==
==References==

Revision as of 13:53, 15 May 2020

Image registration is recovering an affine transformation (rotation + translation) between two images.

Problem Statement

We are given two images \(\displaystyle I_1\) and \(\displaystyle I_2\).
Let \(\displaystyle (x,y)\) be uv coordinates within the image.
We want to find a rotation and translation from \(\displaystyle (x,y)\) to \(\displaystyle (x',y')\) such that \(\displaystyle I_1(x,y) = I_2(x', y')\).
This is represented as:
\( \begin{align} x' &= a_1 x + a_2 y + a_3\\ y' &= a_4 x + a_5 y + a_6 \end{align} \)
This can also be written as:
\(\displaystyle \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & a_3\\ a_4 & a_5 & a_6\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \)

Log-Polar Transformation

See Wolberg and Zokai<ref name="wolberg2000robust">George Wolberg, and Siavash Zokai. Robust Image Registration Using Log-Polar Transform URL:https://home.cis.rit.edu/~cnspci/references/wolberg2000.pdf.

The log-polar transformation is defined as follows:
\( \begin{align} r &= \sqrt{(x-x_c)^2 + (y-y_c)^2}\\ a &= \operatorname{arctan2}(y-y_c, x-x_c) \end{align} \)
where \(\displaystyle (x_c, y_c)\) is the center of the image.

Here a rotation in Cartesian coordinates \(\displaystyle (x, y)\) around the center \((x_c, y_c)\) corresponds to a shift in \(a\) in log-polar coordinates.
These translations can be found using Wikipedia: Cross-correlation.

A scale change (i.e. enlarge or stretch) is a shift in log-space:
\( \lambda x \mapsto \log(\lambda x) = \log(\lambda) + \log(x) \)

References