Spherical Harmonics: Difference between revisions

From David's Wiki
No edit summary
Line 11: Line 11:
Spherical Harmonics are a set of orthonormal basis functions defined on the sphere.<br>
Spherical Harmonics are a set of orthonormal basis functions defined on the sphere.<br>
Below are some explicit formulas for Laplace spherical harmonics stolen from <ref name="stupidsh">Peter-Pike Sloan, [http://www.ppsloan.org/publications/StupidSH36.pdf Stupid Spherical Harmonics (SH) Tricks]</ref>
Below are some explicit formulas for Laplace spherical harmonics stolen from <ref name="stupidsh">Peter-Pike Sloan, [http://www.ppsloan.org/publications/StupidSH36.pdf Stupid Spherical Harmonics (SH) Tricks]</ref>
* <math>Y_l^m(\theta, \varphi) = K_l^m e^{i m \varphi} P_l^{|m|} \cos(\theta)</math> for <math>-l \leq m \leq l</math>
: where <math>P_l^m</math> are the associated Legendre Polynomials
: and <math>K_l^m = \sqrt{\frac{(2l+1)(l-|m|)!}{4 \pi (l+|m|)!}}</math>
For a real valued basis,
* <math>y_l^m = \begin{cases}
\sqrt{2}\operatorname{Re}(Y_l^m) & m > 0\\
\sqrt{2}\operatorname{Im}(Y_l^m) & m < 0\\
Y_l^0 & m = 0
\end{cases}
= \begin{cases}
\sqrt{2} K_l^m \cos(m \varphi) P_l^m(\cos\theta) & m > 0\\
\sqrt{2} K_l^m \sin(|m| \varphi) P_l^{|m|}(\cos\theta) & m < 0\\
K_l^0 P_l^0 (\cos \theta) & m = 0\\
\end{cases}</math>


==Applications==
==Applications==

Revision as of 14:05, 6 November 2019

Spherical Harmonics are a set of orthonormal basis functions

Background

Harmonic Function

Wikipedia Reference
A function \(\displaystyle f: \mathbb{R}^n \rightarrow \mathbb{R}\) is a harmonic function if it satisfies Laplace's equation:

  • The Laplacian (or trace of the hessian) is zero.
  • \(\displaystyle \Delta f = \frac{\partial^2f}{\partial x_1^2} + \frac{\partial^2f}{\partial x_2^2} + \cdots + \frac{\partial^2f}{\partial x_n^2} = 0\)

Definition

Spherical Harmonics are a set of orthonormal basis functions defined on the sphere.
Below are some explicit formulas for Laplace spherical harmonics stolen from [1]

  • \(\displaystyle Y_l^m(\theta, \varphi) = K_l^m e^{i m \varphi} P_l^{|m|} \cos(\theta)\) for \(\displaystyle -l \leq m \leq l\)
where \(\displaystyle P_l^m\) are the associated Legendre Polynomials
and \(\displaystyle K_l^m = \sqrt{\frac{(2l+1)(l-|m|)!}{4 \pi (l+|m|)!}}\)

For a real valued basis,

  • \(\displaystyle y_l^m = \begin{cases} \sqrt{2}\operatorname{Re}(Y_l^m) & m \gt 0\\ \sqrt{2}\operatorname{Im}(Y_l^m) & m \lt 0\\ Y_l^0 & m = 0 \end{cases} = \begin{cases} \sqrt{2} K_l^m \cos(m \varphi) P_l^m(\cos\theta) & m \gt 0\\ \sqrt{2} K_l^m \sin(|m| \varphi) P_l^{|m|}(\cos\theta) & m \lt 0\\ K_l^0 P_l^0 (\cos \theta) & m = 0\\ \end{cases}\)

Applications

Saliency

Ruofei did a project on Saliency using Spherical Harmonics as part of his PhD dissertation.

Resources

References