Spherical Harmonics: Difference between revisions
No edit summary |
|||
Line 11: | Line 11: | ||
Spherical Harmonics are a set of orthonormal basis functions defined on the sphere.<br> | Spherical Harmonics are a set of orthonormal basis functions defined on the sphere.<br> | ||
Below are some explicit formulas for Laplace spherical harmonics stolen from <ref name="stupidsh">Peter-Pike Sloan, [http://www.ppsloan.org/publications/StupidSH36.pdf Stupid Spherical Harmonics (SH) Tricks]</ref> | Below are some explicit formulas for Laplace spherical harmonics stolen from <ref name="stupidsh">Peter-Pike Sloan, [http://www.ppsloan.org/publications/StupidSH36.pdf Stupid Spherical Harmonics (SH) Tricks]</ref> | ||
* <math>Y_l^m(\theta, \varphi) = K_l^m e^{i m \varphi} P_l^{|m|} \cos(\theta)</math> for <math>-l \leq m \leq l</math> | |||
: where <math>P_l^m</math> are the associated Legendre Polynomials | |||
: and <math>K_l^m = \sqrt{\frac{(2l+1)(l-|m|)!}{4 \pi (l+|m|)!}}</math> | |||
For a real valued basis, | |||
* <math>y_l^m = \begin{cases} | |||
\sqrt{2}\operatorname{Re}(Y_l^m) & m > 0\\ | |||
\sqrt{2}\operatorname{Im}(Y_l^m) & m < 0\\ | |||
Y_l^0 & m = 0 | |||
\end{cases} | |||
= \begin{cases} | |||
\sqrt{2} K_l^m \cos(m \varphi) P_l^m(\cos\theta) & m > 0\\ | |||
\sqrt{2} K_l^m \sin(|m| \varphi) P_l^{|m|}(\cos\theta) & m < 0\\ | |||
K_l^0 P_l^0 (\cos \theta) & m = 0\\ | |||
\end{cases}</math> | |||
==Applications== | ==Applications== |
Revision as of 14:05, 6 November 2019
Spherical Harmonics are a set of orthonormal basis functions
Background
Harmonic Function
Wikipedia Reference
A function \(\displaystyle f: \mathbb{R}^n \rightarrow \mathbb{R}\) is a harmonic function if it satisfies Laplace's equation:
- The Laplacian (or trace of the hessian) is zero.
- \(\displaystyle \Delta f = \frac{\partial^2f}{\partial x_1^2} + \frac{\partial^2f}{\partial x_2^2} + \cdots + \frac{\partial^2f}{\partial x_n^2} = 0\)
Definition
Spherical Harmonics are a set of orthonormal basis functions defined on the sphere.
Below are some explicit formulas for Laplace spherical harmonics stolen from [1]
- \(\displaystyle Y_l^m(\theta, \varphi) = K_l^m e^{i m \varphi} P_l^{|m|} \cos(\theta)\) for \(\displaystyle -l \leq m \leq l\)
- where \(\displaystyle P_l^m\) are the associated Legendre Polynomials
- and \(\displaystyle K_l^m = \sqrt{\frac{(2l+1)(l-|m|)!}{4 \pi (l+|m|)!}}\)
For a real valued basis,
- \(\displaystyle y_l^m = \begin{cases} \sqrt{2}\operatorname{Re}(Y_l^m) & m \gt 0\\ \sqrt{2}\operatorname{Im}(Y_l^m) & m \lt 0\\ Y_l^0 & m = 0 \end{cases} = \begin{cases} \sqrt{2} K_l^m \cos(m \varphi) P_l^m(\cos\theta) & m \gt 0\\ \sqrt{2} K_l^m \sin(|m| \varphi) P_l^{|m|}(\cos\theta) & m \lt 0\\ K_l^0 P_l^0 (\cos \theta) & m = 0\\ \end{cases}\)
Applications
Saliency
Ruofei did a project on Saliency using Spherical Harmonics as part of his PhD dissertation.
Resources
References
- ↑ Peter-Pike Sloan, Stupid Spherical Harmonics (SH) Tricks