Probability: Difference between revisions
Line 2: | Line 2: | ||
== | ==Relationships between distributions== | ||
This is important for tests.<br> | This is important for tests.<br> | ||
See [https://en.wikipedia.org/wiki/Relationships_among_probability_distributions Relationships among probability distributions]. | See [https://en.wikipedia.org/wiki/Relationships_among_probability_distributions Relationships among probability distributions]. |
Revision as of 03:12, 5 November 2019
Introductory Probability as taught in Sheldon Ross' book
Relationships between distributions
This is important for tests.
See Relationships among probability distributions.
Poisson Distributions
Sum of poission is poisson sum of lambda.
Normal Distributions
If \(\displaystyle X_1 \sim N(\mu_1, \sigma_1^2)\) and \(\displaystyle X_2 \sim N(\mu_2, \sigma_2^2)\) then \(\displaystyle \lambda_1 X_1 + \lambda_2 X_2 \sim N(\lambda_1 \mu_1 + \lambda_2 X_2, \lambda_1^2 \sigma_1^2 + \lambda_2^2 + \sigma_2^2)\) for any \(\displaystyle \lambda_1, \lambda_2 \in \mathbb{R}\)
Gamma Distributions
Note exponential distributions are also Gamma distrubitions
If \(\displaystyle X \sim \Gamma(k, \theta)\) then \(\displaystyle \lambda X \sim \Gamma(k, c\theta)\).
If \(\displaystyle X_1 \sim \Gamma(k_1, \theta)\) and \(\displaystyle X_2 \sim \Gamma(k_2, \theta)\) then \(\displaystyle X_2 + X_2 \sim \Gamma(k_1 + k_2, \theta)\).
If \(\displaystyle X_1 \sim \Gamma(\alpha, \theta)\) and \(\displaystyle X_2 \sim \Gamma(\beta, \theta)\), then \(\displaystyle \frac{X_1}{X_1 + X_2} \sim B(\alpha, \beta)\)
T-distribution
Ratio of normal and squared-root of Chi-sq distribution yields T-distribution.
Chi-Sq Distribution
The ratio of two normalized Chi-sq is an F-distributions
F Distribution
Too many. See the Wikipedia Page. Most important are Chi-sq and T distribution