CUDA: Difference between revisions

From David's Wiki
Line 12: Line 12:


;Adapted from [https://www.tensorflow.org/install/gpu#install_cuda_with_apt Tensorflow: Install cuda with apt]
;Adapted from [https://www.tensorflow.org/install/gpu#install_cuda_with_apt Tensorflow: Install cuda with apt]
<pre>
<syntaxhighlight lang="bash">
# Add NVIDIA package repositories
# Add NVIDIA package repositories
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.1.243-1_amd64.deb
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.1.243-1_amd64.deb
Line 37: Line 37:
     libnvinfer-dev=6.0.1-1+cuda10.1 \
     libnvinfer-dev=6.0.1-1+cuda10.1 \
     libnvinfer-plugin6=6.0.1-1+cuda10.1
     libnvinfer-plugin6=6.0.1-1+cuda10.1
</pre>
</syntaxhighlight>


For tensorflow and pytorch, you may need to add <code>LD_LIBRARY_PATH=/usr/local/cuda/lib64</code> to your environment variables.<br>
For tensorflow and pytorch, you may need to add <code>LD_LIBRARY_PATH=/usr/local/cuda/lib64</code> to your environment variables.<br>

Revision as of 15:07, 14 December 2020

Installation

Linux

Reference

  • Install the latest nvidia drivers from the standard repo, e.g. nvidia-drivers-450
  • Install Cuda Toolkit separately without the drivers.
    • Use one of the deb install options.
  • For machine learning, you may also want to install the following:
Adapted from Tensorflow: Install cuda with apt
# Add NVIDIA package repositories
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.1.243-1_amd64.deb
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo apt install ./cuda-repo-ubuntu1804_10.1.243-1_amd64.deb
sudo apt-get update
wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt-get update

# Install NVIDIA driver
sudo apt-get install --no-install-recommends nvidia-driver-455
# Reboot. Check that GPUs are visible using the command: nvidia-smi

# Install development and runtime libraries (~4GB)
sudo apt-get install --no-install-recommends \
    cuda-10-1 \
    libcudnn7=7.6.5.32-1+cuda10.1  \
    libcudnn7-dev=7.6.5.32-1+cuda10.1


# Install TensorRT. Requires that libcudnn7 is installed above.
sudo apt-get install -y --no-install-recommends libnvinfer6=6.0.1-1+cuda10.1 \
    libnvinfer-dev=6.0.1-1+cuda10.1 \
    libnvinfer-plugin6=6.0.1-1+cuda10.1

For tensorflow and pytorch, you may need to add LD_LIBRARY_PATH=/usr/local/cuda/lib64 to your environment variables.
You can also do this in PyCharm.

GCC Versions

nvcc sometimes only supports older gcc/g++ versions.
To make it use those by default, create the following symlinks:

  • sudo ln -s /usr/bin/gcc-6 /usr/local/cuda/bin/gcc
  • sudo ln -s /usr/bin/g++-6 /usr/local/cuda/bin/g++

References