CUDA: Difference between revisions
Line 12: | Line 12: | ||
;Adapted from [https://www.tensorflow.org/install/gpu#install_cuda_with_apt Tensorflow: Install cuda with apt] | ;Adapted from [https://www.tensorflow.org/install/gpu#install_cuda_with_apt Tensorflow: Install cuda with apt] | ||
< | <syntaxhighlight lang="bash"> | ||
# Add NVIDIA package repositories | # Add NVIDIA package repositories | ||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.1.243-1_amd64.deb | wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.1.243-1_amd64.deb | ||
Line 37: | Line 37: | ||
libnvinfer-dev=6.0.1-1+cuda10.1 \ | libnvinfer-dev=6.0.1-1+cuda10.1 \ | ||
libnvinfer-plugin6=6.0.1-1+cuda10.1 | libnvinfer-plugin6=6.0.1-1+cuda10.1 | ||
</ | </syntaxhighlight> | ||
For tensorflow and pytorch, you may need to add <code>LD_LIBRARY_PATH=/usr/local/cuda/lib64</code> to your environment variables.<br> | For tensorflow and pytorch, you may need to add <code>LD_LIBRARY_PATH=/usr/local/cuda/lib64</code> to your environment variables.<br> |
Revision as of 15:07, 14 December 2020
Installation
Linux
- Install the latest nvidia drivers from the standard repo, e.g.
nvidia-drivers-450
- Install Cuda Toolkit separately without the drivers.
- Use one of the deb install options.
- For machine learning, you may also want to install the following:
- Adapted from Tensorflow: Install cuda with apt
# Add NVIDIA package repositories
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.1.243-1_amd64.deb
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo apt install ./cuda-repo-ubuntu1804_10.1.243-1_amd64.deb
sudo apt-get update
wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt install ./nvidia-machine-learning-repo-ubuntu1804_1.0.0-1_amd64.deb
sudo apt-get update
# Install NVIDIA driver
sudo apt-get install --no-install-recommends nvidia-driver-455
# Reboot. Check that GPUs are visible using the command: nvidia-smi
# Install development and runtime libraries (~4GB)
sudo apt-get install --no-install-recommends \
cuda-10-1 \
libcudnn7=7.6.5.32-1+cuda10.1 \
libcudnn7-dev=7.6.5.32-1+cuda10.1
# Install TensorRT. Requires that libcudnn7 is installed above.
sudo apt-get install -y --no-install-recommends libnvinfer6=6.0.1-1+cuda10.1 \
libnvinfer-dev=6.0.1-1+cuda10.1 \
libnvinfer-plugin6=6.0.1-1+cuda10.1
For tensorflow and pytorch, you may need to add LD_LIBRARY_PATH=/usr/local/cuda/lib64
to your environment variables.
You can also do this in PyCharm.
GCC Versions
nvcc
sometimes only supports older gcc/g++ versions.
To make it use those by default, create the following symlinks:
sudo ln -s /usr/bin/gcc-6 /usr/local/cuda/bin/gcc
sudo ln -s /usr/bin/g++-6 /usr/local/cuda/bin/g++