PyTorch: Difference between revisions
Line 33: | Line 33: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
==Importing Data== | |||
See [https://pytorch.org/tutorials/beginner/data_loading_tutorial.html Data Loading Tutorial] | |||
==Usage== | ==Usage== |
Revision as of 00:25, 24 June 2020
PyTorch is a popular machine learning library developed by Facebook
Installation
# If using conda, python 3.5+, and CUDA 10.0 (+ compatible cudnn)
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
Getting Started
import torch
import torch.nn as nn
# Training
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
Importing Data
Usage
torch.nn.functional
F.grid_sample
Doc
This function allows you to perform interpolation on your input tensor.
It is very useful for resizing images or warping images.
Memory Usage
Reducing memory usage
- Save loss using
.item()
which returns a standard Python number