PyTorch: Difference between revisions

From David's Wiki
Line 39: Line 39:


==Usage==
==Usage==
===torch.nn.functional===
[https://pytorch.org/docs/stable/nn.functional.html PyTorch Documentation]
====F.grid_sample====
[https://pytorch.org/docs/stable/nn.functional.html#grid-sample Doc]<br>
This function allows you to perform interpolation on your input tensor.<br>
It is very useful for resizing images or warping images.


==Memory Usage==
==Memory Usage==
Reducing memory usage
Reducing memory usage
* Save loss using [https://pytorch.org/docs/stable/tensors.html#torch.Tensor.item <code>.item()</code>] which returns a standard Python number
* Save loss using [https://pytorch.org/docs/stable/tensors.html#torch.Tensor.item <code>.item()</code>] which returns a standard Python number

Revision as of 15:07, 5 March 2020

PyTorch is a popular machine learning library developed by Facebook

Installation

See PyTorch Getting Started

# If using conda, python 3.5+, and CUDA 10.0 (+ compatible cudnn)
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch

Getting Started

import torch
import torch.nn as nn





# Training
for epoch in range(epochs):
  running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

Usage

torch.nn.functional

PyTorch Documentation

F.grid_sample

Doc
This function allows you to perform interpolation on your input tensor.
It is very useful for resizing images or warping images.

Memory Usage

Reducing memory usage

  • Save loss using .item() which returns a standard Python number