Spherical Harmonics: Difference between revisions
No edit summary |
|||
Line 4: | Line 4: | ||
==Background== | ==Background== | ||
===Harmonic Function=== | ===Harmonic Function=== | ||
{{main | Wikipedia: Harmonic_function}} | |||
A function <math>f: \mathbb{R}^n \rightarrow \mathbb{R}</math> is a harmonic function if it satisfies Laplace's equation: | A function <math>f: \mathbb{R}^n \rightarrow \mathbb{R}</math> is a harmonic function if it satisfies Laplace's equation: | ||
* The Laplacian (or trace of the hessian) is zero. | * The Laplacian (or trace of the hessian) is zero. | ||
* <math>\Delta f = \frac{\partial^2f}{\partial x_1^2} + \frac{\partial^2f}{\partial x_2^2} + \cdots + \frac{\partial^2f}{\partial x_n^2} = 0</math> | * <math>\Delta f = \frac{\partial^2f}{\partial x_1^2} + \frac{\partial^2f}{\partial x_2^2} + \cdots + \frac{\partial^2f}{\partial x_n^2} = 0</math> | ||
===Associated Legendre Polynomials=== | |||
{{main | Wikipedia:Associated Legendre polynomials}} | |||
Associated Legendre Polynomials are a set of orthogonal polynomials defined over \([-1, 1]\). | |||
The following 3 recurrance relations define the associated legendre polynomials: | |||
# <math>(l-m)P_l^m = x(2l-1)P_{l-1}^m - (l+1-1) P_{l-2}^m</math> | |||
# <math>P_m^m = (-1)^m(2m-1)!! (1-x^2)^{m/2}</math> | |||
# <math>P^m_{m+1} = x(2m+1)P^m_m</math> | |||
Notes: | |||
* Here <math> | |||
(x)!! = | |||
\begin{cases} | |||
(x)*(x-2)*...*(1) & x\text{ odd}\\ | |||
(x)*(x-2)*...*(2) & x\text{ even} | |||
\end{cases} | |||
</math> | |||
==Definition== | ==Definition== |
Revision as of 16:03, 20 May 2020
Spherical Harmonics are a set of orthonormal basis functions defined over a sphere.
\(\displaystyle f: (\phi, \theta) \rightarrow f(\phi, \theta) \in \mathbb{R}\)
Background
Harmonic Function
A function \(\displaystyle f: \mathbb{R}^n \rightarrow \mathbb{R}\) is a harmonic function if it satisfies Laplace's equation:
- The Laplacian (or trace of the hessian) is zero.
- \(\displaystyle \Delta f = \frac{\partial^2f}{\partial x_1^2} + \frac{\partial^2f}{\partial x_2^2} + \cdots + \frac{\partial^2f}{\partial x_n^2} = 0\)
Associated Legendre Polynomials
Associated Legendre Polynomials are a set of orthogonal polynomials defined over \([-1, 1]\).
The following 3 recurrance relations define the associated legendre polynomials:
- \(\displaystyle (l-m)P_l^m = x(2l-1)P_{l-1}^m - (l+1-1) P_{l-2}^m\)
- \(\displaystyle P_m^m = (-1)^m(2m-1)!! (1-x^2)^{m/2}\)
- \(\displaystyle P^m_{m+1} = x(2m+1)P^m_m\)
Notes:
- Here \(\displaystyle (x)!! = \begin{cases} (x)*(x-2)*...*(1) & x\text{ odd}\\ (x)*(x-2)*...*(2) & x\text{ even} \end{cases} \)
Definition
Spherical Harmonics are a set of orthonormal basis functions defined on the sphere.
Below are some explicit formulas for Laplace spherical harmonics stolen from [1]
There are \(\displaystyle 2l+1\) functions for each band.
- \(\displaystyle Y_l^m(\theta, \varphi) = K_l^m e^{i m \varphi} P_l^{|m|} \cos(\theta)\) for \(\displaystyle -l \leq m \leq l\)
- where \(\displaystyle P_l^m\) are the associated Legendre Polynomials
- and \(\displaystyle K_l^m = \sqrt{\frac{(2l+1)(l-|m|)!}{4 \pi (l+|m|)!}}\)
- l is the band, m is the function
For a real valued basis,
- \(\displaystyle y_l^m = \begin{cases} \sqrt{2}\operatorname{Re}(Y_l^m) & m \gt 0\\ \sqrt{2}\operatorname{Im}(Y_l^m) & m \lt 0\\ Y_l^0 & m = 0 \end{cases} = \begin{cases} \sqrt{2} K_l^m \cos(m \varphi) P_l^m(\cos\theta) & m \gt 0\\ \sqrt{2} K_l^m \sin(|m| \varphi) P_l^{|m|}(\cos\theta) & m \lt 0\\ K_l^0 P_l^0 (\cos \theta) & m = 0\\ \end{cases}\)
Visualizations
Below are distorted sphere visualizations where the radius corresponds to the value at each point.
Applications
Saliency
Ruofei did a project on Saliency using Spherical Harmonics as part of his PhD dissertation.
Resources
References
- ↑ Peter-Pike Sloan, Stupid Spherical Harmonics (SH) Tricks