Interview Algorithms: Difference between revisions
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Insights from Leetcode problems. | Insights from Leetcode problems. | ||
== | ==Two Pointers Algorithms== | ||
Having two pointers can make your algorithm run in linear time. | |||
====Finding a cycle in a linked-list==== | ====Finding a cycle in a linked-list==== | ||
Use two runners. <math>O(n)</math><br> | Use two runners. <math>O(n)</math><br> | ||
Line 8: | Line 10: | ||
If there is a cycle, runner 2 will lap runner 1 within 2 cycles. | If there is a cycle, runner 2 will lap runner 1 within 2 cycles. | ||
==Sliding Window== | |||
==Backtracking== | ==Backtracking== | ||
Line 92: | Line 94: | ||
===Segment Trees=== | ===Segment Trees=== | ||
See [https://cp-algorithms.com/data_structures/segment_tree.html CP Algorithms segment tree] | See [https://cp-algorithms.com/data_structures/segment_tree.html CP Algorithms segment tree] | ||
===Union Find=== | |||
In Union Find, you build a tree where each tree represents a set.<br> | |||
Your given a pair of relations where (a, b) indices a and b are in the same set.<br> | |||
The ''Union'' operation places a and b in the same set by attaching the root of b to the root of a. | |||
The ''Find'' operation recursively looks up the parent of a to find the root of the tree of a. | |||
<syntaxhighlight lang="python"> | |||
parents = {} | |||
def find(a): | |||
while parents[a] != a: | |||
a = parents[a] | |||
return a | |||
for (a, b) in relations: | |||
if a not in parents: | |||
parent[a] = a | |||
a_root = find(a) | |||
if b not in parents: | |||
parent[b] = b | |||
b_root = find(b) | |||
parents[b_root] = a_root # Attach b_root to a_root | |||
</syntaxhighlight> | |||
==Misc Tricks== | ==Misc Tricks== |
Latest revision as of 05:55, 17 May 2024
Insights from Leetcode problems.
Two Pointers Algorithms
Having two pointers can make your algorithm run in linear time.
Finding a cycle in a linked-list
Use two runners. \(\displaystyle O(n)\)
Runner 1 goes two steps per iteration.
Runner 2 goes one step per iteration.
If there is a cycle, runner 2 will lap runner 1 within 2 cycles.
Sliding Window
Backtracking
Permutations
Print all permutations of an array.
The idea here is that you need a for-loop nested for each element of an array.
So n elements means n nested for-loops. You use recursion to nest the loops.
You can also think of this as a graph problem when you need to find every possible path with DFS.
A more advanced solution would use backtracking, however it is time-consuming to implement for an interview.
Here is a quick brute-force solution.
- Enumerate all possible n^n numbers from 000 to 999 and then filter out number with duplicate digits
class Solution {
public:
vector<vector<int>> permute(vector<int>& nums) {
vector<vector<int>> ans;
vector<int> indices(nums.size());
permuteHelper(nums, indices, 0, ans);
return ans;
}
<br />
bool isValid(vector<int>& indices) {
vector<char> check(indices.size(), false);
for (int i = 0; i < indices.size(); i++) {
if (check[indices[i]]) {
return false;
}
check[indices[i]] = true;
}
return true;
}
<br />
void permuteHelper(vector<int>& nums, vector<int>& indices,
int col, vector<vector<int>>& ans) {
if (col == nums.size()) {
if (isValid(indices))
print(nums, indices, ans);
return;
}
for (int i = 0; i < nums.size(); i++) {
indices[col] = i;
permuteHelper(nums, indices, col+1, ans);
}
}
<br />
void print(vector<int>& nums, vector<int>& indices, vector<vector<int>>& ans) {
vector<int> new_nums(nums.size());
for (int i = 0; i < nums.size(); i++) {
new_nums[i] = nums[indices[i]];
}
ans.push_back(new_nums);
}
};
Bit tricks
See https://www.geeksforgeeks.org/bit-tricks-competitive-programming/
The most useful one is
n & n-1
which zeros the least significant set bit. E.g. this can be used to count the number of set bits.
Tricks
Bitmask
Counting
Counting as in tabulate not as in combinatorial counting.
Prefix Sum
Data Structures
Hashmap
Also known as a dictionary or associative array. Theses are used everywhere.
Segment Trees
See CP Algorithms segment tree
Union Find
In Union Find, you build a tree where each tree represents a set.
Your given a pair of relations where (a, b) indices a and b are in the same set.
The Union operation places a and b in the same set by attaching the root of b to the root of a.
The Find operation recursively looks up the parent of a to find the root of the tree of a.
parents = {}
def find(a):
while parents[a] != a:
a = parents[a]
return a
for (a, b) in relations:
if a not in parents:
parent[a] = a
a_root = find(a)
if b not in parents:
parent[b] = b
b_root = find(b)
parents[b_root] = a_root # Attach b_root to a_root
Misc Tricks
Finding duplicates in an array
If you have an array of ints where each number appears \(\displaystyle n\) times and one number appears \(\displaystyle m\gt n\) times where \(\displaystyle gcd(n,m)==1\),
then you count the number of times each bit appears and take it mod \(\displaystyle n\).
The remaining bits will remain \(\displaystyle m \mod n\) times.