|
|
(4 intermediate revisions by the same user not shown) |
Line 14: |
Line 14: |
| conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit | | conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit |
| # Install the runtime and the development tools | | # Install the runtime and the development tools |
| conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit cuda-libraries-dev | | conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit cuda-libraries-dev cuda-nvcc |
| </syntaxhighlight> | | </syntaxhighlight> |
|
| |
|
Line 20: |
Line 20: |
| [https://developer.nvidia.com/cuda-toolkit CUDA Toolkit] | | [https://developer.nvidia.com/cuda-toolkit CUDA Toolkit] |
|
| |
|
| {{hidden | Details |
| |
| See [https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#ubuntu-installation CUDA Ubuntu Installation]
| |
| <syntaxhighlight lang="bash"> | | <syntaxhighlight lang="bash"> |
| # Set UBUNTU_VERSION to 2004 or 2204
| | # Install drivers |
| UBUNTU_VERSION=$(lsb_release -sr | sed -e 's/\.//g')
| | sudo apt install nvidia-driver-565-open |
| | |
| # Install nvidia driver | |
| sudo apt install nvidia-driver-545 | |
| | |
| # Add NVIDIA package repositories
| |
| wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu${UBUNTU_VERSION}/x86_64/cuda-ubuntu${UBUNTU_VERSION}.pin
| |
| sudo mv cuda-ubuntu${UBUNTU_VERSION}.pin /etc/apt/preferences.d/cuda-repository-pin-600
| |
| sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu${UBUNTU_VERSION}/x86_64/3bf863cc.pub
| |
| sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu${UBUNTU_VERSION}/x86_64/ /"
| |
| | |
| # Install cuda.
| |
| sudo apt install cuda
| |
| # Reboot and check that the drivers are working with nvidia-smi
| |
| sudo reboot
| |
| | |
| # Install cudnn if needed
| |
| sudo apt install libcudnn8 libcudnn8-dev
| |
| </syntaxhighlight> | | </syntaxhighlight> |
|
| |
| ;Notes
| |
| * For machine learning, use Anaconda or Docker's CUDA since different versions of TensorFlow and PyTorch require different CUDA versions.
| |
|
| |
| You may need to add <code>LD_LIBRARY_PATH=/usr/local/cuda/lib64</code> to your environment variables.<br>
| |
| You can also do this in PyCharm.<br>
| |
| [[File:Pycharm LD LIBRARY PATH config.png| 200x200px]]
| |
| [[File:Pycharm LD LIBRARY PATH console config.png| 200x200px]]
| |
|
| |
| }}
| |
|
| |
|
| ===GCC Versions=== | | ===GCC Versions=== |