Fourier transform: Difference between revisions

 
(5 intermediate revisions by the same user not shown)
Line 16: Line 16:


===Discrete Fourier Transform===
===Discrete Fourier Transform===
{{Main | Wikipedia: Discrete Fourier transform}}
A naive DFT would compute the matrix of <math>e^{-i2 \pi \xi x}</math> and multiply it with the signal. This would take <math>\mathcal{O}(n^2)</math> time.<br>
A naive DFT would compute the matrix of <math>e^{-i2 \pi \xi x}</math> and multiply it with the signal. This would take <math>\mathcal{O}(n^2)</math> time.<br>
However, most languages have an FFT library which can compute the DFT in <math>\mathcal{O}(n \log n)</math> time.
However, most languages have an FFT library which can compute the DFT in <math>\mathcal{O}(n \log n)</math> time.
Line 47: Line 48:
'''Parseval's Theorem'''<br>
'''Parseval's Theorem'''<br>
<math>\int |f(x)|^2 dx = \int |F(s)|^2 ds</math>
<math>\int |f(x)|^2 dx = \int |F(s)|^2 ds</math>
See [[Wikipedia: Parseval's theorem]]<br>
See [[Wikipedia: Parseval's theorem]]<br>


Line 54: Line 56:
'''Autocorrelation'''<br>
'''Autocorrelation'''<br>
<math>\int f(x') f^*(x' - x) dx' \Leftrightarrow |F(x)|^2</math>
<math>\int f(x') f^*(x' - x) dx' \Leftrightarrow |F(x)|^2</math>
This is a case of the convolution theorem.
This is a case of the convolution theorem.


'''IFFT'''<br>
'''IFFT'''<br>
<math>IFFT(f) = (1/n) \bar{FFT}(\bar{f})</math>
<math>IFFT(f) = (1/n) FFT^*(f^*)</math>
* Where <math>^*</math> is the conjugate.


'''2D FFT'''<br>
'''2D FFT'''<br>
<math>FFT2(f) = FFT_{x}(FFT_{y}(f)) = FFT_{y}(FFT_{x}(f))</math>
<math>FFT2(f) = FFT_{x}(FFT_{y}(f)) = FFT_{y}(FFT_{x}(f))</math>
==Phase correlation==
{{main | Wikipedia: Phase correlation}}


==Short-time Fourier transform==
==Short-time Fourier transform==