CUDA: Difference between revisions

From David's Wiki
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:


==Installation==
==Installation==
===Ubuntu===
I suggest using conda to install cuda for version control your project.
[https://developer.nvidia.com/cuda-toolkit CUDA Toolkit]


{{hidden | Details |
Note that <code>nvidia-smi</code> lists the maximum CUDA version supported by the GPU driver, not the installed version of CUDA.<br>
See [https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#ubuntu-installation CUDA Ubuntu Installation]
You can have a different version of CUDA installed in each conda environment, independently of the version supported by the GPU driver.
<syntaxhighlight lang="bash">
# Set UBUNTU_VERSION to 2004 or 2204
UBUNTU_VERSION=$(lsb_release -sr | sed -e 's/\.//g')


# Add NVIDIA package repositories
===Conda===
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu${UBUNTU_VERSION}/x86_64/cuda-ubuntu${UBUNTU_VERSION}.pin
See [https://anaconda.org/nvidia/cuda-toolkit nvidia/cuda-toolkit] and [https://anaconda.org/nvidia/cuda-libraries-dev nvidia/cuda-libraries-dev]
sudo mv cuda-ubuntu${UBUNTU_VERSION}.pin /etc/apt/preferences.d/cuda-repository-pin-600
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu${UBUNTU_VERSION}/x86_64/3bf863cc.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu${UBUNTU_VERSION}/x86_64/ /"


# Install NVIDIA driver and cuda.
For example:
sudo apt install nvidia-driver-515 cuda
<syntaxhighlight lang="bash">
# Reboot and check that the drivers are working with nvidia-smi
# Install the runtime only
sudo reboot
conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit
 
# Install the runtime and the development tools
# Install cudnn
conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit cuda-libraries-dev cuda-nvcc
sudo apt install libcudnn8 libcudnn8-dev
</syntaxhighlight>
</syntaxhighlight>


;Notes
===Ubuntu===
* For machine learning, use Anaconda or Docker's CUDA since different versions of TensorFlow and PyTorch require different CUDA versions.
[https://developer.nvidia.com/cuda-toolkit CUDA Toolkit]


You may need to add <code>LD_LIBRARY_PATH&#x3D;/usr/local/cuda/lib64</code> to your environment variables.<br>
<syntaxhighlight lang="bash">
You can also do this in PyCharm.<br>
# Install drivers
[[File:Pycharm LD LIBRARY PATH config.png| 200x200px]]
sudo apt install nvidia-driver-565-open
[[File:Pycharm LD LIBRARY PATH console config.png| 200x200px]]
</syntaxhighlight>
 
}}


==GCC Versions==
===GCC Versions===
<code>nvcc</code> sometimes only supports older gcc/g++ versions.   
<code>nvcc</code> sometimes only supports older gcc/g++ versions.   
To make it use those by default, create the following symlinks:
To make it use those by default, create the following symlinks:

Latest revision as of 08:46, 12 December 2024

Installation

I suggest using conda to install cuda for version control your project.

Note that nvidia-smi lists the maximum CUDA version supported by the GPU driver, not the installed version of CUDA.
You can have a different version of CUDA installed in each conda environment, independently of the version supported by the GPU driver.

Conda

See nvidia/cuda-toolkit and nvidia/cuda-libraries-dev

For example:

# Install the runtime only
conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit
# Install the runtime and the development tools
conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit cuda-libraries-dev cuda-nvcc

Ubuntu

CUDA Toolkit

# Install drivers
sudo apt install nvidia-driver-565-open

GCC Versions

nvcc sometimes only supports older gcc/g++ versions.
To make it use those by default, create the following symlinks:

  • sudo ln -s /usr/bin/gcc-6 /usr/local/cuda/bin/gcc
  • sudo ln -s /usr/bin/g++-6 /usr/local/cuda/bin/g++

Alternatively, you can use -ccbin and point to your gcc:

-ccbin /usr/local/cuda/bin/gcc

References