Unsupervised Learning: Difference between revisions
(4 intermediate revisions by the same user not shown) | |||
Line 8: | Line 8: | ||
Here we wish to cluster them to minimize the distance to the mean of their cluster.<br> | Here we wish to cluster them to minimize the distance to the mean of their cluster.<br> | ||
In our formulation we have k clusters.<br> | In our formulation we have k clusters.<br> | ||
The mean of each cluster <math>\mu_i</math> is called the centroid. | The mean of each cluster <math>\mu_i</math> is called the centroid.<br> | ||
====Optimization==== | ====Optimization==== | ||
Let <math>\mathbf{\mu}</math> denote the centroids and let <math>\mathbf{z}</math> denote the cluster labels for our data.<br> | Let <math>\mathbf{\mu}</math> denote the centroids and let <math>\mathbf{z}</math> denote the cluster labels for our data.<br> | ||
Line 103: | Line 103: | ||
<math>J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)</math><br> | <math>J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)</math><br> | ||
Assume <math>\Sigma_j = I</math> for simplicity.<br> | Assume <math>\Sigma_j = I</math> for simplicity.<br> | ||
Then | Then: | ||
<math> | <math display="block"> | ||
J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right) | \begin{aligned} | ||
J(\theta, Q) &= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)\\ | |||
&= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)}, z^{(i)}=j;\theta)) + C_1 \\ | |||
= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)}, z^{(i)}=j;\theta)) + C_1 | &= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)} \mid z^{(i)}=j) P(z^{(i)}=j)) + C_1\\ | ||
&= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)} \mid z^{(i)}=j)) - Q^{(i)}_{(j)} \log( P(z^{(i)}=j)) + C_1\\ | |||
&= \sum_{i=1}^{m}\left[ \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( (2\pi)^{-n/2}exp(-\Vert x^{(i)} + \mu_j \Vert^2 / 2)) - Q^{(i)}_{(j)} \log( \phi_j) \right]+ C_1 \\ | |||
= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)} \mid z^{(i)}=j) P(z^{(i)}=j)) + C_1 | &= \sum_{i=1}^{m}\left[ \sum_{j=1}^{m} Q^{(i)}_{(j)} -\Vert x^{(i)} - \mu_j \Vert^2 / 2) + Q^{(i)}_{(j)} \log( \phi_j) \right]+ C_2 | ||
\end{aligned} | |||
= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)} \mid z^{(i)}=j)) - Q^{(i)}_{(j)} \log( P(z^{(i)}=j)) + C_1 | |||
= \sum_{i=1}^{m}\left[ \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( (2\pi)^{-n/2}exp(-\Vert x^{(i)} + \mu_j \Vert^2 / 2)) - Q^{(i)}_{(j)} \log( \phi_j) \right]+ C_1 | |||
= \sum_{i=1}^{m}\left[ \sum_{j=1}^{m} Q^{(i)}_{(j)} -\Vert x^{(i)} - \mu_j \Vert^2 / 2) + Q^{(i)}_{(j)} \log( \phi_j) \right]+ C_2 | |||
</math><br> | </math><br> | ||
Maximizing wrt <math>\mu</math>, we get <math>\mu_j^* = (\sum_{i} Q^{(i)}_{(i)}x^{(i)}) / (\sum_{i}Q^{(i)}_{(j)})</math>.<br> | Maximizing wrt <math>\mu</math>, we get <math>\mu_j^* = (\sum_{i} Q^{(i)}_{(i)}x^{(i)}) / (\sum_{i}Q^{(i)}_{(j)})</math>.<br> | ||
Line 134: | Line 126: | ||
<math>= \min_{\beta} \sum_{j=1}^{k} \left[\log(\frac{-1}{\beta}(\sum_{i}Q^{(i)}_{(j)})) \sum_{i=1}^{m} Q^{(i)}_{(j)} -(\sum_{i}Q^{(i)}_{(j)}) - (\beta/k) \right]</math><br> | <math>= \min_{\beta} \sum_{j=1}^{k} \left[\log(\frac{-1}{\beta}(\sum_{i}Q^{(i)}_{(j)})) \sum_{i=1}^{m} Q^{(i)}_{(j)} -(\sum_{i}Q^{(i)}_{(j)}) - (\beta/k) \right]</math><br> | ||
Taking the derivative with respect to <math>\beta</math>, we get:<br> | Taking the derivative with respect to <math>\beta</math>, we get:<br> | ||
<math> | <math display="block"> | ||
\sum_{j=1}^{k} [(\frac{1}{(-1/\beta)(\sum Q)})(-\sum Q)(-\beta^{-2})(\sum Q) - \frac{1}{k}] | \begin{aligned} | ||
\sum_{j=1}^{k} [(\frac{1}{(-1/\beta)(\sum Q)})(-\sum Q)(-\beta^{-2})(\sum Q) - \frac{1}{k}] | |||
&= \sum_{j=1}^{k} [ (\beta)(-\beta^{-2})(\sum Q) - \frac{1}{k}] \\ | |||
=\sum_{j=1}^{k} [ (\beta)(-\beta^{-2})(\sum Q) - \frac{1}{k}] | &= \sum_{j=1}^{k} [\frac{-1}{\beta}(\sum_{i=1}^{m} Q) - \frac{1}{k}]\\ | ||
&= [\sum_{i=1}^{m} \frac{-1}{\beta} \sum_{j=1}^{k}P(z^{(i)} = j | x^{(i)}) - \sum_{j=1}^{k}\frac{1}{k}]\\ | |||
&= [\frac{-1}{\beta}\sum_{i=1}^{m}1 - 1]\\ | |||
= | &= \frac{-m}{\beta} - 1 = 0\\ | ||
\implies \beta &= -m | |||
\end{aligned} | |||
=[\sum_{i=1}^{m} \frac{-1}{\beta} \sum_{j=1}^{k}P(z^{(i)} = j | x^{(i)}) - \sum_{j=1}^{k}\frac{1}{k}] | |||
= | |||
= \frac{-m}{\beta} - 1 = 0 | |||
\implies \beta = -m | |||
</math><br> | </math><br> | ||
Plugging in <math>\beta = -m</math> into our equation for <math>\phi_j</math> we get <math>\phi_j = \frac{1}{m}\sum_{i=1}^{m}Q^{(i)}_{(j)}</math> | Plugging in <math>\beta = -m</math> into our equation for <math>\phi_j</math> we get <math>\phi_j = \frac{1}{m}\sum_{i=1}^{m}Q^{(i)}_{(j)}</math> | ||
Line 191: | Line 173: | ||
We know from Baye's rule that <math>P(z|X) = \frac{P(X|z)P(z)}{P(X)}</math>.<br> | We know from Baye's rule that <math>P(z|X) = \frac{P(X|z)P(z)}{P(X)}</math>.<br> | ||
Plugging this into the equation for <math>KL(Q_i(z) \Vert P(z|X))</math> yields our inequality.<br> | Plugging this into the equation for <math>KL(Q_i(z) \Vert P(z|X))</math> yields our inequality.<br> | ||
<math>KL(Q_i(z) \Vert P(z|X)) = E_{Q} \left[ \log(\frac{Q_i(z)}{P(z|X)}) \right] | <math display="block"> | ||
\begin{aligned} | |||
KL(Q_i(z) \Vert P(z|X)) &= E_{Q} \left[ \log(\frac{Q_i(z)}{P(z|X)}) \right]\\ | |||
&=E_Q(\log(\frac{Q_i(z) P(X^{(i)})}{P(X|z)P(z)})\\ | |||
&=E_Q(\log(\frac{Q_i(z)}{P(z)})) + \log(P(x^{(i)})) - E_Q(\log(P(X|z))\\ | |||
&=KL(Q_i(z) \Vert P(z)) + \log(P(x^{(i)}) - E_Q(\log(P(X|z)) | |||
\end{aligned} | |||
</math> | |||
Rearranging terms we get:<br> | Rearranging terms we get:<br> | ||
<math>\log P(x^{(i)}) - KL(Q_i(z) \Vert P(z|X)) = E_Q(\log(P(X|z)) - KL(Q_i(z) \Vert P(z))</math><br> | <math>\log P(x^{(i)}) - KL(Q_i(z) \Vert P(z|X)) = E_Q(\log(P(X|z)) - KL(Q_i(z) \Vert P(z))</math><br> |