UMIACS Servers: Difference between revisions

From David's Wiki
Created page with "Notes on using UMIACS servers"
 
 
(59 intermediate revisions by the same user not shown)
Line 1: Line 1:
Notes on using UMIACS servers
Notes on using UMIACS servers
==Modules==
Use modules to load programs you need to run.<br>
;Notes
* You can load modules in your <code>.bashrc</code> file
<syntaxhighlight lang="bash">
# List loaded modules
module list
# Load a module
module load [my_module]
# List all available modules
module avail
</syntaxhighlight>
Some useful modules in my <code>.bashrc</code> file
<syntaxhighlight lang="bash">
module load tmux
module load cuda/10.0.130
module load cudnn/v7.5.0
module load Python3/3.7.6
module load git
</syntaxhighlight>
==Python==
Do not install anaconda in home. You will run out of space.<br>
Load the Python 3 module adding the following to your .bashrc file
<syntaxhighlight lang="bash">
module load Python3/3.7.6
export PATH="${PATH}:$(python3 -c 'import site; print(site.USER_BASE)')/bin"
</syntaxhighlight>
Then run the following to get pip installed
<syntaxhighlight lang="bash">
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python get-pip.py --user
</syntaxhighlight>
;Notes
* You will need to install things with <code>pip --user</code>
* You may need to add your local site-packages to your PYTHONPATH environment variable
** Add this to .bashrc:
** <code>export PYTHONPATH="${PYTHONPATH}:/nfshomes/$(whoami)/.local/lib/python3.7/site-packages/"</code>
* You can also install using <code>pip install --target=/my-libs-folder/</code>
===Conda===
If you must install conda, install it somewhere with a lot of space like scratch.
===Install PyTorch===
<syntaxhighlight lang="bash">
pip install --user torch===1.3.1 torchvision===0.4.2 -f https://download.pytorch.org/whl/torch_stable.html
</syntaxhighlight>
===Installing Packages to a Directory===
<syntaxhighlight lang="bash">
pip install geographiclib -t /scratch1/davidli/python/
</syntaxhighlight>
==MBRC Cluster==
See [https://wiki.umiacs.umd.edu/umiacs/index.php/MBRC UMIACS MBRC]<br>
===SLURM Job Management===
See [https://docs.rc.fas.harvard.edu/kb/convenient-slurm-commands/ https://docs.rc.fas.harvard.edu/kb/convenient-slurm-commands/]<br>
; 1 GPU
<pre>
srun --pty --gres=gpu:1 --mem=16G --qos=high --time=47:59:00 -w mbrc00 bash
</pre>
; 2 GPUS mbrc00
<pre contenteditable="true">
srun --pty --gres=gpu:2 --mem=16G --qos=default --time=23:59:00 -w mbrc00 bash
</pre>
; CPU-only on scavenger QOS
<pre>
srun --pty --account=scavenger --partition=scavenger \
    --time=3:59:00 \
    --mem=1G -c1 -w mbrc00 bash
</pre>
;Notes
* You can add <code>-w mbrc01</code> to pick mbrc01
* <code>-c 4</code> for 4 cores
====See Jobs====
; See my own jobs
<pre>
squeue -u <user> -o "%8i %10P %8j %10u %10L %5b"
</pre>
; Formatting
* <code>%L</code> is remaining time
* <code>%b</code> is the number of GPUs
; See all jobs
<pre>
squeue
</pre>
===SFTP===
Note: If you know of an easier way, please tell me.
On your PC 
Start an sshd for forwarding. You can do this in a docker container for privacy purposes.
On the cluster: 
Generate an sshd host key:
<pre>
ssh-keygen -t ed25519 -a 100 -f /nfshomes/dli7319/ssh/ssh_host_ed25519_key
</pre>
Create the following <code>sshd_config</code> file
<pre>
# $OpenBSD: sshd_config,v 1.103 2018/04/09 20:41:22 tj Exp $
Port 5981
HostKey /nfshomes/dli7319/ssh/ssh_host_ed25519_key
AuthorizedKeysFile .ssh/authorized_keys
Subsystem sftp /usr/libexec/openssh/sftp-server
</pre>
Start the sshd daemon and proxy the port to your local sshd.
You can make a script like this:
<pre>
#!/bin/bash
LOCAL_PORT=5981
REMOTE_PORT=22350
REMOTE_SSH_PORT=22450
REMOTE_ADDR=$(echo "$SSH_CONNECTION" | awk '{print $1}')
/usr/sbin/sshd -D -f sshd_config & \
ssh -R $REMOTE_PORT:localhost:$LOCAL_PORT root@$REMOTE_ADDR -p $REMOTE_SSH_PORT
</pre>
On your PC: 
Proxy the sshd from the local docker to your localhost. 
Connect to the the sshd on the cluster
==Class Accounts==
See [https://wiki.umiacs.umd.edu/umiacs/index.php/ClassAccounts UMIACS Wiki: ClassAccounts] 
Class accounts have the least priority. If GPUs are available, you can access 1 GPU up to 48 hours. 
However, your home disk only has 18GB and installing PyTorch takes up ~3GB. 
You cannot fit a conda environment in here so just use the python module.
The ssh endpoint is
<pre>
class.umiacs.umd.edu
</pre>
Start a job with:
<pre>
srun --pty --account=class --partition=class --gres=gpu:1 --mem=16G --qos=default --time=47:59:00 -c4 bash
</pre>
{{hidden | My .bashrc |
<pre>
#PS1='\w$ '
PS1='\[\e]0;\u@\h: \w\a\]${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$'
# Modules
module load tmux
module load cuda/10.0.130
module load cudnn/v7.5.0
module load Python3/3.7.6
alias python=python3
export PATH="${PATH}:${HOME}/bin/"
export PATH="${PATH}:${HOME}/.local/bin/"
</pre>
}}
==<code>.bashrc</code>==
{{hidden | My .bashrc |
<syntaxhighlight lang="bash">
#PS1='\w$ '
PS1='\[\e]0;\u@\h: \w\a\]${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$'
if test -f "/opt/rh/rh-php72/enable"; then
    source /opt/rh/rh-php72/enable
fi
export NVM_DIR="$HOME/.nvm"
[ -s "$NVM_DIR/nvm.sh" ] && \. "$NVM_DIR/nvm.sh"  # This loads nvm
[ -s "$NVM_DIR/bash_completion" ] && \. "$NVM_DIR/bash_completion"  # This loads nvm bash_completion
command_exists() {
  type "$1" &> /dev/null ;
}
# Modules
if command_exists module ; then
  module load tmux
  module load cuda/10.2.89
  module load cudnn/v8.0.4
  module load Python3/3.7.6
  module load git/2.25.1
  module load gitlfs
  module load gcc/8.1.0
  module load openmpi/4.0.1
  module load ffmpeg
  module load rclone
fi
if command_exists python3 ; then
  alias python=python3
fi
if command_exists python3 ; then
  export PATH="${PATH}:$(python3 -c 'import site; print(site.USER_BASE)')/bin"
fi
export PYTHONPATH="${PYTHONPATH}:/nfshomes/dli7319/.local/lib/python3.7/site-packages/"
export PATH="${HOME}/bin/:${PATH}"
</syntaxhighlight>
}}
==Software==
===git===
The MBRC cluster has an git available in the modules.<br>
Then you can download [https://github.com/git-lfs/git-lfs/releases git-lfs compiled] and drop it in <code>~/bin/</code>.<br>
Make sure <code>${HOME}/bin</code> is in your path and run <code>git lfs install</code><br>
;Notes
* Make sure you have a recent version of git
** E.g. <code>module load git/2.25.1</code>
==Copying Files==
There are 3 ways that I use to copy files:
* For small files, you can copy to your home directory under <code>/nfshomes/</code> via SFTP to the submission node. I rarely do this because the home directory is only a few gigs.
* For large files and folder, I typically use [[rclone]] to copy to the cloud and then copy back to the scratch drives with a cpu-only job.
** You can store project files on Google Drive or the UMIACS object storage.
** Note that Google Drive has a limit on files per second and a daily limit of 750GB in transfers.

Latest revision as of 15:23, 15 June 2023

Notes on using UMIACS servers


Modules

Use modules to load programs you need to run.

Notes
  • You can load modules in your .bashrc file
# List loaded modules
module list

# Load a module
module load [my_module]

# List all available modules
module avail

Some useful modules in my .bashrc file

module load tmux
module load cuda/10.0.130
module load cudnn/v7.5.0
module load Python3/3.7.6
module load git

Python

Do not install anaconda in home. You will run out of space.
Load the Python 3 module adding the following to your .bashrc file

module load Python3/3.7.6
export PATH="${PATH}:$(python3 -c 'import site; print(site.USER_BASE)')/bin"

Then run the following to get pip installed

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python get-pip.py --user
Notes
  • You will need to install things with pip --user
  • You may need to add your local site-packages to your PYTHONPATH environment variable
    • Add this to .bashrc:
    • export PYTHONPATH="${PYTHONPATH}:/nfshomes/$(whoami)/.local/lib/python3.7/site-packages/"
  • You can also install using pip install --target=/my-libs-folder/

Conda

If you must install conda, install it somewhere with a lot of space like scratch.

Install PyTorch

pip install --user torch===1.3.1 torchvision===0.4.2 -f https://download.pytorch.org/whl/torch_stable.html

Installing Packages to a Directory

pip install geographiclib -t /scratch1/davidli/python/

MBRC Cluster

See UMIACS MBRC

SLURM Job Management

See https://docs.rc.fas.harvard.edu/kb/convenient-slurm-commands/

1 GPU
srun --pty --gres=gpu:1 --mem=16G --qos=high --time=47:59:00 -w mbrc00 bash
2 GPUS mbrc00
srun --pty --gres=gpu:2 --mem=16G --qos=default --time=23:59:00 -w mbrc00 bash
CPU-only on scavenger QOS
srun --pty --account=scavenger --partition=scavenger \
     --time=3:59:00 \
     --mem=1G -c1 -w mbrc00 bash
Notes
  • You can add -w mbrc01 to pick mbrc01
  • -c 4 for 4 cores

See Jobs

See my own jobs
squeue -u <user> -o "%8i %10P %8j %10u %10L %5b"
Formatting
  • %L is remaining time
  • %b is the number of GPUs
See all jobs
squeue

SFTP

Note: If you know of an easier way, please tell me.

On your PC
Start an sshd for forwarding. You can do this in a docker container for privacy purposes.

On the cluster:
Generate an sshd host key:

ssh-keygen -t ed25519 -a 100 -f /nfshomes/dli7319/ssh/ssh_host_ed25519_key

Create the following sshd_config file

#	$OpenBSD: sshd_config,v 1.103 2018/04/09 20:41:22 tj Exp $
Port 5981
HostKey /nfshomes/dli7319/ssh/ssh_host_ed25519_key
AuthorizedKeysFile	.ssh/authorized_keys
Subsystem	sftp	/usr/libexec/openssh/sftp-server

Start the sshd daemon and proxy the port to your local sshd. You can make a script like this:

#!/bin/bash

LOCAL_PORT=5981
REMOTE_PORT=22350
REMOTE_SSH_PORT=22450
REMOTE_ADDR=$(echo "$SSH_CONNECTION" | awk '{print $1}')

/usr/sbin/sshd -D -f sshd_config & \
ssh -R $REMOTE_PORT:localhost:$LOCAL_PORT root@$REMOTE_ADDR -p $REMOTE_SSH_PORT 

On your PC:
Proxy the sshd from the local docker to your localhost.
Connect to the the sshd on the cluster

Class Accounts

See UMIACS Wiki: ClassAccounts

Class accounts have the least priority. If GPUs are available, you can access 1 GPU up to 48 hours.
However, your home disk only has 18GB and installing PyTorch takes up ~3GB.
You cannot fit a conda environment in here so just use the python module.

The ssh endpoint is

class.umiacs.umd.edu

Start a job with:

srun --pty --account=class --partition=class --gres=gpu:1 --mem=16G --qos=default --time=47:59:00 -c4 bash
My .bashrc
#PS1='\w$ '
PS1='\[\e]0;\u@\h: \w\a\]${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$'

# Modules
module load tmux
module load cuda/10.0.130
module load cudnn/v7.5.0
module load Python3/3.7.6
alias python=python3

export PATH="${PATH}:${HOME}/bin/"
export PATH="${PATH}:${HOME}/.local/bin/"

.bashrc

My .bashrc
#PS1='\w$ '
PS1='\[\e]0;\u@\h: \w\a\]${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[00m\]:\[\033[01;34m\]\w\[\033[00m\]\$'

if test -f "/opt/rh/rh-php72/enable"; then
    source /opt/rh/rh-php72/enable
fi

export NVM_DIR="$HOME/.nvm"
[ -s "$NVM_DIR/nvm.sh" ] && \. "$NVM_DIR/nvm.sh"  # This loads nvm
[ -s "$NVM_DIR/bash_completion" ] && \. "$NVM_DIR/bash_completion"  # This loads nvm bash_completion

command_exists() {
  type "$1" &> /dev/null ;
}


# Modules
if command_exists module ; then
  module load tmux
  module load cuda/10.2.89
  module load cudnn/v8.0.4
  module load Python3/3.7.6
  module load git/2.25.1
  module load gitlfs
  module load gcc/8.1.0
  module load openmpi/4.0.1
  module load ffmpeg
  module load rclone
fi
if command_exists python3 ; then
  alias python=python3
fi

if command_exists python3 ; then
  export PATH="${PATH}:$(python3 -c 'import site; print(site.USER_BASE)')/bin"
fi
export PYTHONPATH="${PYTHONPATH}:/nfshomes/dli7319/.local/lib/python3.7/site-packages/"

export PATH="${HOME}/bin/:${PATH}"

Software

git

The MBRC cluster has an git available in the modules.
Then you can download git-lfs compiled and drop it in ~/bin/.
Make sure ${HOME}/bin is in your path and run git lfs install

Notes
  • Make sure you have a recent version of git
    • E.g. module load git/2.25.1

Copying Files

There are 3 ways that I use to copy files:

  • For small files, you can copy to your home directory under /nfshomes/ via SFTP to the submission node. I rarely do this because the home directory is only a few gigs.
  • For large files and folder, I typically use rclone to copy to the cloud and then copy back to the scratch drives with a cpu-only job.
    • You can store project files on Google Drive or the UMIACS object storage.
    • Note that Google Drive has a limit on files per second and a daily limit of 750GB in transfers.