Probability: Difference between revisions

No edit summary
 
(49 intermediate revisions by the same user not shown)
Line 1: Line 1:
Calculus-based Probability
Calculus-based Probability
This is content covered in STAT410 and STAT700 at UMD.


==Basics==
==Basics==
Line 6: Line 8:
* <math>P(S) = 1</math> where <math>S</math> is your sample space
* <math>P(S) = 1</math> where <math>S</math> is your sample space
* For mutually exclusive events <math>E_1, E_2, ...</math>, <math>P\left(\bigcup_i^\infty E_i\right) = \sum_i^\infty P(E_i)</math>
* For mutually exclusive events <math>E_1, E_2, ...</math>, <math>P\left(\bigcup_i^\infty E_i\right) = \sum_i^\infty P(E_i)</math>
===Monotonicity===
===Monotonicity===
* For all events <math>A</math>, <math>B</math>, <math>A \subset B \implies P(A) \leq P(B)</math>
* For all events <math>A</math> and <math>B</math>, <math>A \subset B \implies P(A) \leq P(B)</math>
{{hidden | Proof | }}
{{hidden | Proof | }}
===Conditional Probability===
<math>P(A|B)</math> is the probability of event A given event B.<br>
Mathematically, this is defined as <math>P(A|B) = P(A,B) / P(B)</math>.<br>
Note that this can also be written as <math>P(A|B)P(B) = P(A, B)</math>
With some additional substitution, we get '''Baye's Theorem''':
<math>
P(A|B) = \frac{P(B|A)P(A)}{P(B)}
</math>
==Random Variables==
A random variable is a variable which takes on a distribution rather than a value.
===PMF, PDF, CDF===
For discrete distributions, we call <math>p_{X}(x)=P(X=x)</math> the probability mass function (PMF).<br>
For continuous distributions, we have the probability density function (PDF) <math>f(x)</math>.<br>
The comulative distribution function (CDF) is <math>F(x) = P(X \leq x)</math>.<br>
The CDF is the prefix sum of the PMF or the integral of the PDF. Likewise, the PDF is the derivative of the CDF.
===Joint Random Variables===
Two random variables are independant iff <math>f_{X,Y}(x,y) = f_X(x) f_Y(y)</math>.<br>
Otherwise, the marginal distribution is <math>f_X(x) = \int f_{X,Y}(x,y) dy</math>.
===Change of variables===
Let <math>g</math> be a monotonic increasing function and <math>Y = g(X)</math>.<br>
Then <math>F_Y(y) = P(Y \leq y) = P(X \leq g^{-1}(y)) = F_X(g^{-1}(y))</math>.<br>
And <math>f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} F_X(g^{-1}(y)) = f_X(g^{-1}(y)) \frac{d}{dy}g^{-1}(y)</math><br>
Hence:
<math display="block">
  f_Y(y) = f_x(g^{-1}(y)) \frac{d}{dy} g^{-1}(y)
</math>


==Expectation and Variance==
==Expectation and Variance==
Line 17: Line 51:
* <math>E(X) = \sum_S xp(x)</math> or <math>\int_S xp(x)dx</math>
* <math>E(X) = \sum_S xp(x)</math> or <math>\int_S xp(x)dx</math>
* <math>Var(X) = E[(X-E(X))^2] = E(X^2) - (E(X))^2</math>
* <math>Var(X) = E[(X-E(X))^2] = E(X^2) - (E(X))^2</math>
===Total Expection===
===Total Expection===
<math>E(X) = E(E(X|Y))</math><br>
<math>E_{X}(X) = E_{Y}(E_{X|Y}(X|Y))</math><br>
Dr. Xu refers to this as the smooth property.
Dr. Xu refers to this as the smooth property.
{{hidden | Proof |
{{hidden | Proof |
<math>
<math>
E(X) = \int_S xp(x)dx  
\begin{aligned}
= \int_x x \int_y p(x,y)dy dx
E(X) &= \int_S x p(x)dx \\
= \int_x x \int_y p(x|y)p(y)dy dx
&= \int_x x \int_y p(x,y)dy dx \\
= \int_y\int_x x  p(x|y)dxp(y)dy
&= \int_x x \int_y p(x|y)p(y)dy dx \\
&= \int_y\int_x x  p(x|y)dxp(y)dy
\end{aligned}
</math>
</math>
}}
}}


===Total Variance===
===Total Variance===
<math>Var(Y) = E(Var(Y|X)) + Var(E(Y | X)</math><br>
<math>Var(Y) = E(Var(Y|X)) + Var(E(Y | X))</math><br>
This one is not used as often on tests as total expectation
This one is not used as often on tests as total expectation
{{hidden | Proof |
{{hidden | Proof |
<math>
\begin{aligned}
Var(Y) &= E(Y^2) - E(Y)^2 \\
&= E(E(Y^2|X)) - E(E(Y|X))^2\\
&= E(Var(Y|X) + E(Y|X)^2) - E(E(Y|X))^2\\
&= E((Var(Y|X)) + E(E(Y|X)^2) - E(E(Y|X))^2\\
&= E((Var(Y|X)) + Var(E(Y|X))\\
\end{aligned}
</math>
}}


}}
===Sample Mean and Variance===
The sample mean is <math>\bar{X} = \frac{1}{n}\sum_{i=1}^{n}X_i</math>.<br>
The unbiased sample variance is <math>S^2 = \frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X})^2</math>.
 
====Student's Theorem====
Let <math>X_1,...,X_n</math> be from <math>N(\mu, \sigma^2)</math>.<br>
Then the following results about the sample mean <math>\bar{X}</math>
and the unbiased sample variance <math>S^2</math> hold:
* <math>\bar{X}</math> and <math>S^2</math> are independent
* <math>\bar{X} \sim N(\mu, \sigma^2 / n)</math>
* <math>(n-1)S^2 / \sigma^2 \sim \chi^2(n-1)</math>
 
===Jensen's Inequality===
{{main | Wikipedia: Jensen's inequality}}
Let g be a convex function (i.e. second derivative is positive).
Then <math>g(E(x)) \leq E(g(x))</math>.


==Moments and Moment Generating Functions==
==Moments and Moment Generating Functions==
===Definitions===
===Definitions===
We call <math>E(X^i)</math> the i'th moment of <math>X</math>.<br>
{{main | Wikipedia: Moment (mathematics) | Wikipedia: Central moment | Wikipedia: Moment-generating function}}
We call <math>E(|X - E(X)|^i)</math> the i'th central moment of <math>X</math>.<br>
* <math>E(X^n)</math> the n'th moment
Therefore the mean is the first moment and the variance is the second central moment.
* <math>E((X-\mu)^n)</math> the n'th central moment
* <math>E(((X-\mu) / \sigma)^n)</math> the n'th standardized moment
Expectation is the first moment and variance is the second central moment.<br>
Additionally, ''skew'' is the third standardized moment and ''kurtosis'' is the fourth standardized moment.
 
===Moment Generating Functions===
===Moment Generating Functions===
<math>E(e^{tX})</math><br>
To compute moments, we can use a moment generating function (MGF):
We call this the moment generating function (mgf).<br>
<math display="block">M_X(t) = E(e^{tX})</math>
We can differentiate it with respect to <math>t</math> and set <math>t=0</math> to get the higher moments.
With the MGF, we can get any order moments by taking n derivatives and setting <math display="inline">t=0</math>.
; Notes
; Notes
* The mgf, if it exists, uniquely defines the distribution.
* The MGF, if it exists, uniquely defines the distribution.
* The mgf of <math>X+Y</math> is <math>E(e^{t(X+Y)})=E(e^{t(X)})E(e^{t(Y)})</math>
* The MGF of <math>X+Y</math> is <math>MGF_{X+Y}(t) = E(e^{t(X+Y)})=E(e^{tX})E(e^{tY}) = MGF_X(t) * MGF_Y(t)</math>
 
===Characteristic function===
===Characteristic function===


==Convergence==
==Convergence==
There are 4 types of convergence typically taught in undergraduate courses.<br>
{{main | Wikipedia: Convergence of random variables}}
See [https://en.wikipedia.org/wiki/Convergence_of_random_variables Wikipedia Convergence of random variables]
There are 4 common types of convergence.
 
===Almost Surely===
===Almost Surely===
* <math>P(\lim X_i = X) = 1</math>
* <math>P(\lim X_i = X) = 1</math>
Line 72: Line 140:


==Delta Method==
==Delta Method==
See [https://en.wikipedia.org/wiki/Delta_method Wikipedia]<br>
{{main | Wikipedia:Delta method}}
 
Suppose <math>\sqrt{n}(X_n - \theta) \xrightarrow{D} N(0, \sigma^2)</math>.<br>
Suppose <math>\sqrt{n}(X_n - \theta) \xrightarrow{D} N(0, \sigma^2)</math>.<br>
Let <math>g</math> be a function such that <math>g'</math> exists and <math>g'(\theta) \neq 0</math><br>
Let <math>g</math> be a function such that <math>g'</math> exists and <math>g'(\theta) \neq 0</math><br>
Then <math>\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{D} N(0, \sigma^2 g'(\theta)^2)</math><br>
Then <math>\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{D} N(0, \sigma^2 g'(\theta)^2)</math>
 
Multivariate:<br>
Multivariate:<br>
<math>\sqrt{n}(B - \beta) \xrightarrow{D} N(0, \Sigma) \implies \sqrt{n}(h(B)-h(\beta)) \xrightarrow{D} N(0, h'(\theta)^T \Sigma h'(\theta))</math><br>
<math>\sqrt{n}(B - \beta) \xrightarrow{D} N(0, \Sigma) \implies \sqrt{n}(h(B)-h(\beta)) \xrightarrow{D} N(0, h'(\theta)^T \Sigma h'(\theta))</math>
 
;Notes
;Notes
* You can think of this like the Mean Value theorem for random variables.
* You can think of this like the Mean Value theorem for random variables.
: <math>(g(X_n) - g(\theta)) \approx g'(\theta)(X_n - \theta)</math>
** <math>(g(X_n) - g(\theta)) \approx g'(\theta)(X_n - \theta)</math>
 
==Order Statistics==
 
Consider iid random variables <math>X_1, ..., X_n</math>.<br>
Then the order statistics are <math>X_{(1)}, ..., X_{(n)}</math> where <math>X_{(i)}</math> represents the i'th smallest number.
 
===Min and Max===
The easiest to reason about are the minimum and maximum order statistics:
<math>P(X_{(1)} <= x) = P(\text{min}(X_i) <= x) = 1 - P(X_1 > x, ..., X_n > x)</math>
<math>P(X_{(n)} <= x) = P(\text{max}(X_i) <= x) = P(X_1 <= x, ..., X_n <= x)</math>
 
===Joint PDF===
If <math>X_i</math> has pdf <math>f</math>, the joint pdf of <math>X_{(1)}, ..., X_{(n)}</math> is:
<math>
g(x_1, ...) = n!*f(x_1)*...*f(x_n)
</math>
since there are n! ways perform a change of variables.
 
===Individual PDF===
<math>
f_{X(i)}(x) = \frac{n!}{(i-1)!(n-i)!} F(x)^{i-1} f(x) [1-F(x)]^{n-1}
</math>


==Inequalities and Limit Theorems==
==Inequalities and Limit Theorems==
Line 88: Line 181:
{{hidden | Proof |  
{{hidden | Proof |  
<math>
<math>
\begin{aligned}
E(X)  
E(X)  
= \int_{0}^{\infty}xf(x)dx  
&= \int_{0}^{\infty}xf(x)dx \\
= \int_{0}^{a}xf(x)dx + \int_{a}^{\infty}xf(x)dx
&= \int_{0}^{a}xf(x)dx + \int_{a}^{\infty}xf(x)dx\\
\geq \int_{a}^{\infty}xf(x)dx
&\geq \int_{a}^{\infty}xf(x)dx\\
\geq \int_{a}^{\infty}af(x)dx
&\geq \int_{a}^{\infty}af(x)dx\\
=a \int_{a}^{\infty}f(x)dx
&=a \int_{a}^{\infty}f(x)dx\\
=a*P(X \geq a)\\
&=a * P(X \geq a)\\
\implies P(x\geq a) \leq \frac{E(X)}{a}
\implies& P(X \geq a) \leq \frac{E(X)}{a}
\end{aligned}
</math>
</math>
}}
}}
===Chebyshev's Inequality===
===Chebyshev's Inequality===
* <math>P(|X - \mu| \geq k \sigma) \leq \frac{1}{k^2}</math>
* <math>P(|X - \mu| \geq k \sigma) \leq \frac{1}{k^2}</math>
Line 103: Line 199:
{{hidden | Proof |  
{{hidden | Proof |  
Apply Markov's inequality:<br>
Apply Markov's inequality:<br>
Let <math>Y = |X - \mu|</math>
Let <math>Y = |X - \mu|</math><br>
<math>P(|X - \mu| \geq k) = P(Y \geq k) = = P(Y^2 \geq k^2) \leq \frac{E(Y^2)}{k^2} = \frac{E((X - \mu)^2)}{k^2}</math>
Then:<br>
<math>
\begin{aligned}
P(|X - \mu| \geq k) &= P(Y \geq k) \\
&= P(Y^2 \geq k^2) \\
&\leq \frac{E(Y^2)}{k^2} \\
&= \frac{E((X - \mu)^2)}{k^2}
\end{aligned}
</math>
}}
}}
* Usually used to prove convergence in probability
* Usually used to prove convergence in probability
Line 124: Line 228:
* The sample mean converges to the population mean almost surely.
* The sample mean converges to the population mean almost surely.


==Relationships between distributions==
==Properties and Relationships between distributions==
This is important for tests.<br>
{{main | Wikipedia: Relationships among probability distributions}}
See [https://en.wikipedia.org/wiki/Relationships_among_probability_distributions Relationships among probability distributions].
;This is important for exams.


===Poisson Distributions===
===Poisson Distribution===
Sum of poission is poisson sum of lambda.
* If <math>X_i \sim Poisson(\lambda_i)</math> then <math>\sum X_i \sim Poisson(\sum \lambda_i)</math>


===Normal Distributions===
===Normal Distribution===
* If <math>X_1 \sim N(\mu_1, \sigma_1^2)</math> and <math>X_2 \sim N(\mu_2, \sigma_2^2)</math> then <math>\lambda_1 X_1 + \lambda_2 X_2 \sim N(\lambda_1 \mu_1 + \lambda_2 X_2, \lambda_1^2 \sigma_1^2 + \lambda_2^2 + \sigma_2^2)</math> for any <math>\lambda_1, \lambda_2 \in \mathbb{R}</math>
* If <math>X_1 \sim N(\mu_1, \sigma_1^2)</math> and <math>X_2 \sim N(\mu_2, \sigma_2^2)</math> then <math>\lambda_1 X_1 + \lambda_2 X_2 \sim N(\lambda_1 \mu_1 + \lambda_2 X_2, \lambda_1^2 \sigma_1^2 + \lambda_2^2 + \sigma_2^2)</math> for any <math>\lambda_1, \lambda_2 \in \mathbb{R}</math>


===Gamma Distributions===
===Exponential Distribution===
* <math>\operatorname{Exp}(\lambda)</math> is equivalent to <math>\Gamma(1, 1/\lambda)</math>
** Note that some conventions flip the second parameter of gamma, so it would be <math>\Gamma(1, \lambda)</math>
* If <math>\epsilon_1, ..., \epsilon_n</math> are exponential distributions then <math>\min\{\epsilon_i\} \sim \exp(\sum \lambda_i)</math>
* Note that the maximum is not exponentially distributed
** However, if <math>X_1, ..., X_n \sim \exp(1)</math> then <math>Z_n=n\exp(\max\{\epsilon_i\}) \rightarrow \exp(1)</math>
 
===Gamma Distribution===
Note exponential distributions are also Gamma distrubitions
Note exponential distributions are also Gamma distrubitions
* If <math>X \sim \Gamma(k, \theta)</math> then <math>\lambda X \sim \Gamma(k, c\theta)</math>.<br>
* If <math>X \sim \Gamma(k, \theta)</math> then <math>\lambda X \sim \Gamma(k, c\theta)</math>.<br>
Line 141: Line 252:


===T-distribution===
===T-distribution===
Ratio of normal and squared-root of Chi-sq distribution yields T-distribution.
* Ratio of standard normal and squared-root of Chi-sq distribution yields T-distribution.
** If <math>Z \sim N(0,1)</math> and <math> V \sim \Chi^2(v)</math> then <math>\frac{Z}{\sqrt{V/v}} \sim \text{t-dist}(v)</math>


===Chi-Sq Distribution===
===Chi-Sq Distribution===
The ratio of two normalized Chi-sq is an F-distributions
* The ratio of two normalized Chi-sq is an F-distributions
** If <math>X \sim \chi^2_{d1}</math> and <math>Y \sim \chi^2_{d2}</math> then <math>\frac{X/d1}{Y/d2} \sim F(d1,d2)</math>
* If <math>Z_1,...,Z_k \sim N(0,1)</math> then <math>Z_1^2 + ... + Z_k^2 \sim \Chi^2(k)</math>
* If <math>X_i \sim \Chi^2(k_i)</math> then <math>X_1 + ... + X_n \sim \Chi^2(k_1 +...+ k_n)</math>
* <math>\Chi^2(k)</math> is equivalent to <math>\Gamma(k/2, 2)</math>


===F Distribution===
===F Distribution===
Too many. See [https://en.wikipedia.org/wiki/F-distribution the Wikipedia Page].
Too many to list. See [[Wikipedia: F-distribution]].
Most important are Chi-sq and T distribution
 
Most important are Chi-sq and T distribution:
* If <math>X \sim \chi^2_{d1}</math> and <math>Y \sim \chi^2_{d2}</math> then <math>\frac{X/d1}{Y/d2} \sim F(d1,d2)</math>
* If <math>X \sim t_{(n)}</math> then <math>X^2 \sim F(1, n)</math> and <math>X^{-2} \sim F(n, 1)</math>


==Textbooks==
==Textbooks==
* Sheldon Ross' A First Course in Probability
* [https://smile.amazon.com/dp/032179477X Sheldon Ross' A First Course in Probability]
* [https://smile.amazon.com/Introduction-Mathematical-Statistics-Robert-Hogg/dp/0321795431?sa-no-redirect=1 Hogg and Craig's Mathematical Statistics]
* [https://smile.amazon.com/dp/0321795431 Hogg and Craig's Mathematical Statistics]
* Casella and Burger's Statistical Inference
* [https://smile.amazon.com/dp/0534243126 Casella and Burger's Statistical Inference]