Jump to content

Deep Learning: Difference between revisions

Line 1,316: Line 1,316:
;Lemma
;Lemma
If H has eigenvalue with negative real parts then eigenvalues of J lie in a unit ball iff <math>\eta < \frac{1}{|Re(\lambda)} \frac{2}{1+ (Im(\lambda)/Re(\lambda))^2}</math> for all <math>\lambda</math>.
If H has eigenvalue with negative real parts then eigenvalues of J lie in a unit ball iff <math>\eta < \frac{1}{|Re(\lambda)} \frac{2}{1+ (Im(\lambda)/Re(\lambda))^2}</math> for all <math>\lambda</math>.
The convergence rate of Sim GDA is proportional to the spectral radius <math>O(\rho(J)^t)</math>. 
Thus we want the spectral radius to be small (e.g. 1/2) for a fast convergence rate.
Suppose we have a really large negative real part in the eigenvalue.
Then <math>\eta</math> will need to be really small which we don't want.
Similarly if <math>Im(\lambda)/Re(\lambda)</math> is large then we will have slow convergence.
{{ hidden | Proof |
Suppose <math>\lambda</math> is an eigenvalue of H. 
<math>\lambda = -a + ib</math> with <math>a > 0</math>. 
<math>J = I + \lambda H</math> 
<math>
\begin{aligned}
|1 + \eta \lambda|^2 &= | 1 + \eta (-a + ib)| ^2\\
&= |(1 - \eta a) + i(\eta b)|^2\\
&= 1 + \eta^2 a^2 - 2 a \eta + \eta^2 b^2 < 1\\
\implies & \eta(a^2+b^2) - 2a < 0\\
\implies & \eta < \frac{2a}{a^2 + b^2} = \frac{1}{a} \frac{2}{1+(b/a)^2}
\end{aligned}
</math>


==Misc==
==Misc==