Unsupervised Learning: Difference between revisions

Line 103: Line 103:
<math>J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)</math><br>
<math>J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)</math><br>
Assume <math>\Sigma_j = I</math> for simplicity.<br>
Assume <math>\Sigma_j = I</math> for simplicity.<br>
Then<br>
Then:
<math>
<math display="block">
J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)
\begin{aligned}
</math><br>
J(\theta, Q) &= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)\\
<math>
&= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)}, z^{(i)}=j;\theta)) + C_1 \\
= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)}, z^{(i)}=j;\theta)) + C_1  
&= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)} \mid z^{(i)}=j) P(z^{(i)}=j)) + C_1\\
</math><br>
&= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)} \mid z^{(i)}=j)) -  Q^{(i)}_{(j)} \log( P(z^{(i)}=j)) + C_1\\
<math>
&= \sum_{i=1}^{m}\left[ \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( (2\pi)^{-n/2}exp(-\Vert x^{(i)} + \mu_j \Vert^2 / 2)) -  Q^{(i)}_{(j)} \log( \phi_j) \right]+ C_1 \\
= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)} \mid z^{(i)}=j) P(z^{(i)}=j)) + C_1
&= \sum_{i=1}^{m}\left[ \sum_{j=1}^{m} Q^{(i)}_{(j)} -\Vert x^{(i)} - \mu_j \Vert^2 / 2) +  Q^{(i)}_{(j)} \log( \phi_j) \right]+ C_2  
</math><br>
\end{aligned}
<math>
= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)} \mid z^{(i)}=j)) -  Q^{(i)}_{(j)} \log( P(z^{(i)}=j)) + C_1
</math><br>
<math>
= \sum_{i=1}^{m}\left[ \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( (2\pi)^{-n/2}exp(-\Vert x^{(i)} + \mu_j \Vert^2 / 2)) -  Q^{(i)}_{(j)} \log( \phi_j) \right]+ C_1  
</math><br>
<math>
= \sum_{i=1}^{m}\left[ \sum_{j=1}^{m} Q^{(i)}_{(j)} -\Vert x^{(i)} - \mu_j \Vert^2 / 2) +  Q^{(i)}_{(j)} \log( \phi_j) \right]+ C_2  
</math><br>
</math><br>
Maximizing wrt <math>\mu</math>, we get <math>\mu_j^* = (\sum_{i} Q^{(i)}_{(i)}x^{(i)}) / (\sum_{i}Q^{(i)}_{(j)})</math>.<br>
Maximizing wrt <math>\mu</math>, we get <math>\mu_j^* = (\sum_{i} Q^{(i)}_{(i)}x^{(i)}) / (\sum_{i}Q^{(i)}_{(j)})</math>.<br>