Unsupervised Learning: Difference between revisions

Line 77: Line 77:
</math><br>
</math><br>
<math>
<math>
\implies \log\left[E_{Q}\left(\frac{Pr(x^{(i)}, q^{(i)}; \theta)}{Q^{(i)}_{(j)}}\right)\right] \geq E_{Q} \left[ \log \left(\frac{Pr(x^{(i)}, q^{(i)}; \theta)}{Q^{(i)}(j)} \right)\right]
\implies \log\left[E_{Q}\left(\frac{P(x^{(i)}, q^{(i)}; \theta)}{Q^{(i)}_{(j)}}\right)\right] \geq E_{Q} \left[ \log \left(\frac{P(x^{(i)}, q^{(i)}; \theta)}{Q^{(i)}(j)} \right)\right]
</math><br>
</math><br>
Let <math>J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{k} Q^{(i)}_{(j)} \log \left( \frac{Pr(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)</math><br>
Let <math>J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{k} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)</math><br>
The EM algorithm is an iterative algorithm which alternates between an E-Step and an M-Step.
The EM algorithm is an iterative algorithm which alternates between an E-Step and an M-Step.
=====E-Step=====
=====E-Step=====
Line 88: Line 88:
This implies <math>Q^{(i)}(j) = c * P(x^{(i)}, z^{(i)} = j ; \theta)</math>.<br>
This implies <math>Q^{(i)}(j) = c * P(x^{(i)}, z^{(i)} = j ; \theta)</math>.<br>
Since Q is a pmf, we have <math>Q^{(i)}(j) = \frac{1}{P(x^{(i)})} * P(x^{(i)}, z^{(i)} = j ; \theta) = P(z^{(i)} ; x^{(i)}, \theta)</math><br>
Since Q is a pmf, we have <math>Q^{(i)}(j) = \frac{1}{P(x^{(i)})} * P(x^{(i)}, z^{(i)} = j ; \theta) = P(z^{(i)} ; x^{(i)}, \theta)</math><br>
Q is updated with <math>Q^{(i)}(j) = \frac{Pr(z^{(i)}=j)Pr(x^{(i)}|z^{(i)}=j)}{Pr(x^{(i)})}</math>
Q is updated with <math>Q^{(i)}(j) = \frac{P(z^{(i)}=j)P(x^{(i)}|z^{(i)}=j)}{P(x^{(i)})}</math>
{{hidden | Maximization w.r.t Q |
{{hidden | Maximization w.r.t Q |
<math>J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{k} Q^{(i)}_{(j)} \log \left( \frac{Pr(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)</math><br>
<math>J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{k} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)</math><br>
We are assuming that Q is a pmf so <math>\sum_j Q = 1 </math><br>
We are assuming that Q is a pmf so <math>\sum_j Q = 1 </math><br>
Our lagrangian is:<br>
Our lagrangian is:<br>
<math>
<math>
\max_{Q} \min_{\beta} \left[ \sum_{i=1}^{m} \sum_{j=1}^{k} Q^{(i)}_{(j)} \log \left( \frac{Pr(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right) +\beta (\sum_j Q^{(i)}_{(j)} - 1)\right]
\max_{Q} \min_{\beta} \left[ \sum_{i=1}^{m} \sum_{j=1}^{k} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right) +\beta (\sum_j Q^{(i)}_{(j)} - 1)\right]
</math>
</math>
We can maximize each <math>Q^{(i)}</math> independently.<br>
We can maximize each <math>Q^{(i)}</math> independently.<br>
Taking the derivative wrt Q we get:<br>
Taking the derivative wrt Q we get:<br>
<math>
<math>
\frac{\partial}{\partial Q^{(i)}_{(j)}} \sum_{j=1}^{k} Q^{(i)}_{(j)} \log \left( \frac{Pr(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right) +\beta (\sum_j Q^{(i)}_{(j)} - 1)
\frac{\partial}{\partial Q^{(i)}_{(j)}} \sum_{j=1}^{k} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right) +\beta (\sum_j Q^{(i)}_{(j)} - 1)
</math><br>
</math><br>
<math>
<math>
= \log(\frac{Pr(x^{(i)}, z^{(i)}=j;\theta)}{Q}) - Q \frac{Q}{Pr(x^{(i)}, z^{(i)}=j;\theta)} (Pr(x^{(i)}, z^{(i)}=j;\theta))(Q^{-2}) + \beta
= \log(\frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q}) - Q \frac{Q}{P(x^{(i)}, z^{(i)}=j;\theta)} (P(x^{(i)}, z^{(i)}=j;\theta))(Q^{-2}) + \beta
</math>
</math>
</math><br>
</math><br>
<math>
<math>
= \log(\frac{Pr(x^{(i)}, z^{(i)}=j;\theta)}{Q}) - 1 + \beta = 0
= \log(\frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q}) - 1 + \beta = 0
</math><br>
</math><br>
<math>
<math>
\implies Q^{(i)}_{(j)} = (\frac{1}{exp(1-\beta)})Pr(x^{(i)}, z^{(i)}=j;\theta)
\implies Q^{(i)}_{(j)} = (\frac{1}{exp(1-\beta)})P(x^{(i)}, z^{(i)}=j;\theta)
</math><br>
</math><br>
Since Q is a pmf, we know it sums to 1 so we get the same result replacing <math>(\frac{1}{exp(1-\beta)})</math> with <math>Pr(x^{(i)}</math>
Since Q is a pmf, we know it sums to 1 so we get the same result replacing <math>(\frac{1}{exp(1-\beta)})</math> with <math>P(x^{(i)}</math>
}}
}}


=====M-Step=====
=====M-Step=====
We will fix <math>Q</math> and maximize J wrt <math>\theta</math>
We will fix <math>Q</math> and maximize J wrt <math>\theta</math>
<math>J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log \left( \frac{Pr(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)</math><br>
<math>J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)</math><br>
Assume <math>\Sigma_j = I</math> for simplicity.<br>
Assume <math>\Sigma_j = I</math> for simplicity.<br>
Then<br>
Then<br>
<math>
<math>
J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log \left( \frac{Pr(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)
J(\theta, Q) = \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log \left( \frac{P(x^{(i)}, z^{(i)}=j;\theta)}{Q^{(i)}(j)} \right)
</math><br>
</math><br>
<math>
<math>
= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( Pr(x^{(i)}, z^{(i)}=j;\theta)) + C_1  
= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)}, z^{(i)}=j;\theta)) + C_1  
</math><br>
</math><br>
<math>
<math>
= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( Pr(x^{(i)} \mid z^{(i)}=j) Pr(z^{(i)}=j)) + C_1
= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)} \mid z^{(i)}=j) P(z^{(i)}=j)) + C_1
</math><br>
</math><br>
<math>
<math>
= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( Pr(x^{(i)} \mid z^{(i)}=j)) -  Q^{(i)}_{(j)} \log( Pr(z^{(i)}=j)) + C_1
= \sum_{i=1}^{m} \sum_{j=1}^{m} Q^{(i)}_{(j)} \log ( P(x^{(i)} \mid z^{(i)}=j)) -  Q^{(i)}_{(j)} \log( P(z^{(i)}=j)) + C_1
</math><br>
</math><br>
<math>
<math>