Unsupervised Learning: Difference between revisions

Line 77: Line 77:
</math><br>
</math><br>
<math>
<math>
\implies \log[E_{Q}(\frac{Pr(x^{(i)}, z^{(i)}; \theta)}{Q})] \geq E_{Q}[\log(\frac{Pr(X^{(i)}, q^{(i)}; \theta)}{Q^{(i)}(j)}]
\implies \log\left[E_{Q}\left(\frac{Pr(x^{(i)}, z^{(i)}; \theta)}{Q}\right)\right] \geq E_{Q} \left[ \log \left(\frac{Pr(X^{(i)}, q^{(i)}; \theta)}{Q^{(i)}(j)} \right)\right]
</math><br>
</math><br>
; E-Step
; E-Step
We will fix <math>\theta</math> and optimize wrt <math>Q</math>
We will fix <math>\theta</math> and optimize wrt <math>Q</math>.<br>
Jensen's inequality holds with equality iff either the function is linear or if the random variable is degenerate.<br>
Jensen's inequality holds with equality iff either the function is linear or if the random variable is degenerate.<br>
Since log is not linear, we will assume <math>\frac{P(x^{(i)}, z^{(i)}=j; \theta)
Since log is not linear, we will assume <math>\frac{P(x^{(i)}, z^{(i)}=j; \theta)