Quaternion: Difference between revisions

No change in size ,  6 October 2020
no edit summary
No edit summary
Line 61: Line 61:
===Geodesic arc-length distance===
===Geodesic arc-length distance===
For two unit quaternions <math>q_1</math> and <math>q_2</math>, the geodesic arc length is <math>\alpha</math> where <math>q_1 \cdot q_2 = \cos \alpha</math>.   
For two unit quaternions <math>q_1</math> and <math>q_2</math>, the geodesic arc length is <math>\alpha</math> where <math>q_1 \cdot q_2 = \cos \alpha</math>.   
Because of sign ambiguity (<math>R(q_2) = R(-q_2)</math>, we take the minimum value:
Because of sign ambiguity, <math>R(q_2) = R(-q_2)</math>, we take the minimum value:
<math display="block">
<math display="block">
d_{geodesic}(q_1, q_2) = \min(\alpha, \pi-\alpha) \text{ where }
d_{geodesic}(q_1, q_2) = \min(\alpha, \pi-\alpha) \text{ where }
Line 92: Line 92:


==Combined Point + Frame Alignment Problem==
==Combined Point + Frame Alignment Problem==
Given a spatial profile matrix <math>M(E)</math> and orientation frame profile matrix <math>U(S)</math>, we can normalize the scale to have unit-eigenvalue and the napply linear interpolation with dimensional constant <math>\sigma</math>:
Given a spatial profile matrix <math>M(E)</math> and orientation frame profile matrix <math>U(S)</math>, we can normalize the scale to have unit-eigenvalue and then apply linear interpolation with dimensional constant <math>\sigma</math>:
<math display="block">
<math display="block">
\Delta_{xf}(t, \sigma) = q \cdot \left[ (1-t) \frac{M(E)}{\epsilon_{x}} + t \sigma \frac{U(S)}{\epsilon_{f}} \right] \cdot q
\Delta_{xf}(t, \sigma) = q \cdot \left[ (1-t) \frac{M(E)}{\epsilon_{x}} + t \sigma \frac{U(S)}{\epsilon_{f}} \right] \cdot q