Quaternion: Difference between revisions

Line 53: Line 53:
===Algebraic Solutions===
===Algebraic Solutions===
There are expressions for solving the eigenvalues of <math>M</math>.
There are expressions for solving the eigenvalues of <math>M</math>.
==3D Orientation-Frame Alignment Problem==
An orientation frame are the columns of the <math>SO(3)</math> orientation matrix. 
In this problem, we assume we have <math>n</math> paired orientation frames, <math>\{p_k\}</math> and <math>\{r_k\}</math> which we want to align using quaternion <math>q</math>.
===Geodesic arc-length distance===
For two unit quaternions <math>q_1</math> and <math>q_2</math>, the geodesic arc length is <math>\alpha</math> where <math>q_1 \cdot q_2 = \cos \alpha</math>. 
Because of sign ambiguity (<math>R(q_2) = R(-q_2)</math>, we take the minimum value:
<math display="block">
d_{geodesic}(q_1, q_2) = \min(\alpha, \pi-\alpha) \text{ where }
0 \leq d_{geodesic}(q_1, q_2) \leq \frac{\pi}{2}
</math>
The least-squares optimization is:
<math display="block">
\begin{align*}
\mathbf{S}_{geodesic} &= \sum_{k=1}^{N}(\operatorname{arccos} |(q*p_k) \cdot r_k|)^2\\
&= \sum_{k=1}^{N}(\operatorname{arccos} |q \cdot (r_k * \bar{p}_k)|)^2
\end{align*}
</math>


==Resources==
==Resources==
* [https://arxiv.org/pdf/1804.03528.pdf The Quaternion-Based Spatial Coordinate and Orientation Frame Alignment Problems by Andrew Hanson] [https://journals.iucr.org/a/issues/2020/04/00/ib5072/ib5072.pdf Edited Paper]
* [https://arxiv.org/pdf/1804.03528.pdf The Quaternion-Based Spatial Coordinate and Orientation Frame Alignment Problems by Andrew Hanson] [https://journals.iucr.org/a/issues/2020/04/00/ib5072/ib5072.pdf Edited Paper]