Machine Learning: Difference between revisions

No edit summary
Line 43: Line 43:
Positive Definite:<br>
Positive Definite:<br>
Let <math>\mathbf{v} \in \mathbb{R}^n</math>.<br>
Let <math>\mathbf{v} \in \mathbb{R}^n</math>.<br>
Then <math>\mathbf{v}^T K v  
Then  
= v^T \[\sum_j K_{ij}v_j\]
<math>
= \sum_i \sum_j v_{i}K_{ij}v_{j}
\begin{aligned}
= \sum_i \sum_j v_{i}\phi(x^{(i)})^T\phi(x^{(j)})v_{j}
\mathbf{v}^T K v
= \sum_i \sum_j v_{i} \sum_k \phi_k(x^{(i)}) \phi_k(x^{(j)})v_{j}
&= v^T [\sum_j K_{ij}v_j]\\
= \sum_k \sum_i \sum_j v_{i} \phi_k(x^{(i)}) \phi_k(x^{(j)})v_{j}
&= \sum_i \sum_j v_{i}K_{ij}v_{j}\\
= \sum_k \sum_i  v_{i} \phi_k(x^{(i)}) \sum_j \phi_k(x^{(j)})v_{j}
&= \sum_i \sum_j v_{i}\phi(x^{(i)})^T\phi(x^{(j)})v_{j}\\
= \sum_k (\sum_i  v_{i} \phi_k(x^{(i)}))^2
&= \sum_i \sum_j v_{i} \sum_k \phi_k(x^{(i)}) \phi_k(x^{(j)})v_{j}\\
\geq 0
&= \sum_k \sum_i \sum_j v_{i} \phi_k(x^{(i)}) \phi_k(x^{(j)})v_{j}\\
&= \sum_k \sum_i  v_{i} \phi_k(x^{(i)}) \sum_j \phi_k(x^{(j)})v_{j}\\
&= \sum_k (\sum_i  v_{i} \phi_k(x^{(i)}))^2\\
&\geq 0
\end{aligned}
</math>
</math>
}}
}}