Deep Learning: Difference between revisions

Line 201: Line 201:
<math>K(w, x_j, x_j) = \frac{1}{m}\sum_{i=1}^{m} v_i^2 x^2 \left(\sigma'(w_i x)\right)^2 \equiv O(1)</math> are the j-th diagonal terms of the tangent kernel:
<math>K(w, x_j, x_j) = \frac{1}{m}\sum_{i=1}^{m} v_i^2 x^2 \left(\sigma'(w_i x)\right)^2 \equiv O(1)</math> are the j-th diagonal terms of the tangent kernel:
<math>K(w) \in \mathbb{R}^{n \times n}</math>.   
<math>K(w) \in \mathbb{R}^{n \times n}</math>.   
Then the trace of the tangent kernel is also <math>O(1)</math> so <math>\Vert K(w) \Vert = O(1)</math>.   
Then the trace of the tangent kernel is also <math>O(1)</math> so the eigenvalues are bounded: <math>\Vert K(w) \Vert = O(1)</math>.   
<math>H_{ij} = \frac{1}{\sqrt{m}} v_i \sigma '' (w_j x) x^2 1_{i=j}</math>   
<math>H_{ij} = \frac{1}{\sqrt{m}} v_i \sigma '' (w_j x) x^2 1_{i=j}</math>   
The hessian is a diagonal matrix.
The hessian is a diagonal matrix. The spectral norm of the hessian (the maximum eigenvalue) is the maximum of the diagonal elements:\\
<math>\Vert H \Vert_2 = \max_{i \in [m]} H_{ii} = \frac{x^2}{\sqrt{m}} \max_{i \in [m]} | v_i \sigma '' (w_j x)| = O(\frac{1}{\sqrt{m}})</math>   
<math>\Vert H \Vert_2 = \max_{i \in [m]} H_{ii} = \frac{x^2}{\sqrt{m}} \max_{i \in [m]} | v_i \sigma '' (w_j x)| = O(\frac{1}{\sqrt{m}})</math>   
As m goes to infinity, our hessian <math>H</math> goes to 0 and tangent kernel <math>K</math> goes to a constant.   
As m goes to infinity, our hessian <math>H</math> goes to 0 and tangent kernel <math>K</math> goes to a constant.